id
int64
-30,985
55.9k
text
stringlengths
5
437k
28,677
1/100 \cdot 10000 + 10000 = \left(1 + 1/100\right) \cdot 10000
-12,908
\frac{5}{8} = \frac{15}{24}
4,584
-22 \cdot x^2 - x \cdot x = -23 \cdot x^2
1,668
-\phi^2/2 (-\phi^2) = e^{-\phi^2} \phi^3
28,370
2 \cdot x \cdot c = (x + x) \cdot c = x \cdot c + x \cdot c = 2 \cdot x \cdot c
28,100
\tan^{-1}{\sqrt{3}/3} = \frac{\pi}{6}
-7,381
\frac{5}{14}\cdot \frac{4}{13} = \dfrac{10}{91}
1,829
7/36*(\frac{15}{4})^2 = 175/64
21,511
\cos^3{π} = (-1) \cdot (-1) \cdot (-1) = -1
-6,038
\dfrac{8(x + 4)}{(x + 10)(x + 4)} + \dfrac{4(x + 10)}{(x + 10)(x + 4)} - \dfrac{8}{(x + 10)(x + 4)} = \dfrac{ 8(x + 4) + 4(x + 10) - 8}{(x + 10)(x + 4)}
-1,583
\pi \cdot \frac{19}{12} = 5/6 \cdot \pi + \pi \cdot 3/4
-4,048
\frac{54*g^4}{g^2*30} = \frac{g^4}{g^2}*\frac{54}{30}
17,520
(z_i + y_i)*c_i = z_i*c_i + c_i*y_i
11,032
2 \cdot g \cdot f + 2 \cdot g \cdot h + 2 \cdot f \cdot h = 4 \cdot g + 4 \cdot f + 4 \cdot h = g \cdot f \cdot h
7,325
\tau + 1 - p > 0 \Rightarrow \tau \gt p + \left(-1\right)
-18,332
\dfrac{y\cdot (y + 10)}{(y + 3) (y + 10)} = \frac{1}{30 + y^2 + 13 y}(y\cdot 10 + y^2)
4,324
-4 C + A\cdot 2 + 2 B = 0 \Rightarrow -2 C + A + B = 0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\cdot 3
868
(1/a)^n = a^{-n} = \frac{1}{a^n}
34,026
(1 + k)*k! = (k + 1)!
8,630
\frac{86}{100}*114/100 x = x
6,047
-h_1 \cdot f_1 + f_2 \cdot h_2 = -f_1 \cdot h_1 + f_2 \cdot h_2 - f_1 \cdot h_2 + f_1 \cdot h_2
24,509
103/165 = \dfrac{1}{11} + 1/3 + \frac15
-2,104
17/12*\pi = 17/12*\pi + 0
29,103
1 = a^0 = a^{1 + (-1)} = \dfrac1a*a^1 = \frac{a}{a}
15,109
3 \cdot (-1) + x = 0 \implies x = 3
-9,640
-\dfrac{4}{5} = -\frac{1}{25}*20
-2,650
\sqrt{11}\times 6 = \sqrt{11}\times \left(1 + 3 + 2\right)
-22,255
n^2 + n*5 + 6*(-1) = ((-1) + n)*\left(6 + n\right)
-3,466
\dfrac{4 \cdot 2}{5 \cdot 2} = \frac{8}{10}
-1,139
\dfrac{1}{\left(-4\right)*1/9}*((-1)*9*1/7) = -9/7*(-\tfrac94)
10,500
xl + x = x \cdot \left(1 + l\right)
-9,433
-20\cdot x \cdot x + 6\cdot x = -x\cdot 2\cdot 2\cdot 5\cdot x + x\cdot 2\cdot 3
9,464
\frac{1}{3!}\cdot \left(\binom{202}{2} - 3\cdot 101\right) = \frac{1}{6}\cdot (20301 + 303\cdot (-1)) = 3333
25,220
(Z_2 + Z_1)^2 - 2\cdot Z_1\cdot Z_2 = Z_2^2 + Z_1^2
1,411
\left(\sin^{-1}(1) = y rightarrow \sin(y) = 1\right) rightarrow y = \pi/2
13,915
\frac{1}{4} \pi + \pi = \frac{\pi\cdot 5}{4}
10,884
a \cdot \mu_T = \mu_Z \Rightarrow a = \frac{\mu_Z}{\mu_T}
1,822
2^2\cdot l + ((-1) + l)^2 = (1 + l)^2
24,565
y\times (y + 1) = y\times (y + 1) = y^2 + y
8,119
\frac{4 \cdot 4 \cdot 4}{3 \cdot 3 \cdot 3} = (4/3)^3
-21,923
-\dfrac{1}{6} + \dfrac{8}{5} = - {\dfrac{1 \times 5}{6 \times 5}} + {\dfrac{8 \times 6}{5 \times 6}} = - {\dfrac{5}{30}} + {\dfrac{48}{30}} = - \dfrac{{5} + {48}}{30} = \dfrac{43}{30}
3,286
\frac{1}{h\cdot x\cdot f} = \dfrac{1/h}{f}\cdot \frac{1}{x}
17,872
28 = 1 + 3^{3 + 6 \cdot 0}
33,189
\left(x * x + y^2\right)*(-\dfrac{y}{x} + 1) = (-\frac{1}{x}*y + 1)*((x^2 + y * y)^{1/2})^2
20,328
8 + 2*\dfrac{8}{14} = 64/7
-16,328
i = 3 s = s + 4
-1,641
3/4 \pi = -\pi*2 + \dfrac1411 \pi
-26,248
1 = H \cdot e^{7 \cdot 0} = H
15,351
-\sin{x}\cdot \sin{y} + \cos{y}\cdot \cos{x} = \cos\left(x + y\right)
-7,909
\frac{1}{5 - 3\cdot i}\cdot \left(25 + i\cdot 19\right)\cdot \frac{5 + 3\cdot i}{3\cdot i + 5} = \frac{25 + i\cdot 19}{5 - i\cdot 3}
14,382
\frac{5!}{10} \cdot 2 \cdot 5! = 5! \cdot 5!/5 = 4! \cdot 5!
-14,593
528 = 4\times 82 + 2\times 100
16,887
\sin(\vartheta_1 + \vartheta_2) = \sin{\vartheta_2}\cdot \cos{\vartheta_1} + \cos{\vartheta_2}\cdot \sin{\vartheta_1}
-21,871
\frac16*4 - \frac{9}{2} = 4/(6) - 9*3/\left(2*3\right) = 4/6 - \frac{27}{6} = \frac16*(4 + 27*(-1)) = -\frac{23}{6}
6,948
\sqrt{t + 1} = 1 + t/2 + \ldots
32,121
(x + 1)^3 \cdot 4 = (1 + x)^2 \cdot (4 + x \cdot 4)
24,719
x^2 + a^2 + b b + h^2 = 0 \implies a = b = h = x = 0
20,345
\left(3\cdot (-1) + j\right)\cdot (1 + j) = j^2 - 2\cdot j + 3\cdot (-1)
-16,345
6*75^{1 / 2} = 6*(25*3)^{\frac{1}{2}}
33,784
C\cdot C/(C\cdot m)/(C\cdot x) = \frac{1}{m\cdot C\cdot x}\cdot C
29,533
90/11.25 = \frac{90}{45*1/4} = 4*90/45 = 4*2 = 8
13,359
(n + \frac{1}{2})^2 = n^2 + n + 1/4
20,940
295 = 5*59
-1,584
\pi\cdot 9/4 = \frac13\cdot 2\cdot \pi + 19/12\cdot \pi
33,174
(-(-5)^{1/2} + 1)\cdot (1 + \left(-5\right)^{1/2}) = 6
-20,610
\frac{-5 \cdot p + 7}{7 - 5 \cdot p} \cdot \left(-\frac{1}{4} \cdot 9\right) = \tfrac{63 \cdot (-1) + 45 \cdot p}{-p \cdot 20 + 28}
21,740
\mathbb{E}(B)^4 = \mathbb{E}(B^4)
20,670
\tfrac{3}{100}\cdot 3/100 = 9/10000 = 0.0009
13,227
\sin{2\cdot r} = 2\cdot \cos{r}\cdot \sin{r}
29,989
-\dfrac{1}{2} + \dfrac32 = 1
15,639
(-1) + x^4 = (1 + x) (x^2 + 1) (x + (-1))
38,409
-\tfrac{\pi}{4} = \frac{\pi\cdot (-1)}{4}
15,780
A\cdot \varepsilon = \varepsilon\cdot A
15,878
(n^2 + \frac12 \cdot n)^2 = n^4 + n^3 + n^2/4 < n^4 + n^3 + n \cdot n + n + 1
1,666
\sin{3x} = -4\sin^3{x} + 3\sin{x}
35,034
8 = 5*3 + 5 (-1) + 3 (-1) + 1
4,669
158/24 = \tfrac{1}{24} \cdot \left(12 \cdot 12 + 2^2 + 10\right)
544
(x * x + 1 + (-1)) x = x^2 * x
27,353
(hk)^g := hgk/g := \frac{h}{g}g kg/g
2,485
\left(d + b\right)^2 = d^2 + 2db + b^2
20,556
(z + 1) z \cdots\cdot ((-1) + z + l) = z^l
14,780
0 = \frac{1}{f} \cdot ((f - b) \cdot x + b^2) - b = (f - b)/f \cdot x + \frac{b^2}{f} - b
-4,522
-\frac{2}{3 + x} - \frac{1}{x + 1}\cdot 2 = \frac{1}{3 + x^2 + x\cdot 4}\cdot (-x\cdot 4 + 8\cdot (-1))
7,554
a \times 2^0 = a
22,495
\sin{y} = \sin(y\times 2 - y)
-6,725
\frac{1}{10}\times 8 + 9/100 = \frac{1}{100}\times 80 + 9/100
-24,035
9 + 7 \cdot 4 = 9 + 28 = 9 + 28 = 37
19,935
\frac{1}{24} (27 + 24 (-1)) = \dfrac{3}{24} = \frac18 = 12.5
23,858
h - c + d = h - c - d
10,035
2! \binom{5}{2} = \frac{3! \binom{5}{2}}{3}1
-7,712
\left(104 - 28*i + 78*i + 21\right)/25 = \dfrac{1}{25}*(125 + 50*i) = 5 + 2*i
-1,697
\pi \cdot \dfrac{1}{12} \cdot 17 + \pi \cdot \frac{1}{6} \cdot 5 = 9/4 \cdot \pi
11,262
x^3 = 8x^2 - 20^x + 16 + \dotsm
21,753
2 = (3^2 + 0^2 + 0^2 + 1^2 + 1^2 + 1^2)/6
6,551
734 = 34 + 500 + 334 + 200 + 167 (-1) + 100 (-1) + 67 (-1)
-17,505
3 = 78 + 75\cdot \left(-1\right)
17,416
121 \cdot 121 \cdot 121 = 49^3 + 84^3 + 102^3
4,036
A/X \cdot x = X \cdot x \cdot \frac1X/X \cdot A
17,177
1 + x\cdot 2 \leq e^x \implies e^{x + 1} \gt e^x + e^x \gt x \cdot x + 2\cdot x + 1 = (x + 1)^2
9,830
(\mathbb{P}(Z_1) + \mathbb{P}(Z_2))^2 = \mathbb{P}(Z_1)^2 + 2\mathbb{P}(Z_1) \mathbb{P}(Z_2) + \mathbb{P}(Z_2)^2 = 1 \Rightarrow 0.9 = \mathbb{P}(Z_1)^2 + \mathbb{P}(Z_2)^2