id
int64
-30,985
55.9k
text
stringlengths
5
437k
13,502
\frac{z}{z^3} = \frac{1}{z * z}
-26,594
(x*2)^2 = 4*x^2
14,941
\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{1}{\sqrt{1 - \sin^2\left(x\right)}}\cdot \sin(x)
-19,628
\tfrac{6}{\frac18} \cdot 1/5 = \frac65 \cdot \frac{1}{1} \cdot 8
7,264
1 = \tfrac17*(11 - 2*2)
-20,872
\frac{1}{90 + 9*t}*\left(2*t + 20\right) = \dfrac{1}{t + 10}*(t + 10)*\frac{2}{9}
-3,170
-63^{1/2} + 112^{1/2} = (16 \cdot 7)^{1/2} - (9 \cdot 7)^{1/2}
6,011
25 = 4^2 + 3 * 3
-4,733
\dfrac{1}{2 + y^2 + 3*y}*(-2*y + 5*\left(-1\right)) = \frac{1}{2 + y} - \frac{3}{y + 1}
964
(1 + 4 + 9)\cdot 999 = 14\cdot \left(1000 + (-1)\right) = 13986
32,996
4 = (1^3 + 1^3)*(1^3 + 1^3)
-20,929
-9/(-9)*(-9/2) = 81/(-18)
1,350
s + s\cdot 0 = s
-10,785
-\frac{y + 8\cdot \left(-1\right)}{y^3\cdot 20}\cdot 4/4 = -\frac{1}{80\cdot y^3}\cdot (32\cdot \left(-1\right) + y\cdot 4)
14,997
\cos(\pi/17) \cdot 2 = 2 \cdot \cos(2 \cdot \pi/34)
-26,639
81\cdot \left(-1\right) + 16\cdot x^6 = (4\cdot x^3 + 9\cdot \left(-1\right))\cdot \left(9 + 4\cdot x \cdot x \cdot x\right)
-10,601
\frac{7}{q + 3 \cdot \left(-1\right)} \cdot \frac{5}{5} = \frac{1}{15 \cdot (-1) + 5 \cdot q} \cdot 35
-15,167
\dfrac{x^5}{\frac{1}{\frac{1}{t^{10}} \cdot \dfrac{1}{x^{10}}}} = \frac{x^5}{x^{10} \cdot t^{10}}
-3,020
\sqrt{96} + \sqrt{150} + \sqrt{24} = \sqrt{16*6} + \sqrt{25*6} + \sqrt{4*6}
-25,984
840 = \frac{1}{0.1}84
24,263
1225/5050 = \frac{1}{202} 49
32,125
\left(t + (-1)\right)^2 = t \cdot t - 2 \cdot t + 1
6,482
((-1) + \frac{k*u*h}{i*g*x})*100 = \dfrac{1}{i*g*x}*(-x*i*g + k*h*u)*100
-7,000
\frac{3}{2}\cdot \frac{1}{7} = \frac{1}{14}\cdot 3
4,609
1/l + 3*(1 + l^2) + 3*\left(-1\right) = 3*l^2 + \dfrac{1}{l}
19,120
n + \left(-1\right) + n + 2(-1) = 3(-1) + n\cdot 2
16,795
3\cdot \left(\dfrac13\cdot (d + 7) + 4\right) = 3\cdot \dfrac13\cdot \left(d + 7\right) + 3\cdot 4 = d + 7 + 12
6,916
6\cdot m\cdot 8 + k\cdot 48 = 48\cdot (k + m)
26,890
\sin{\frac14\cdot \pi} = \frac{1}{\sqrt{2}} = \cos{\pi/4}
22,106
(1 + y^4 + y^3 + y \cdot y + y)\cdot ((-1) + y) = (-1) + y^5
16,761
\frac{\mathrm{d}n}{\mathrm{d}n} - r = \frac{\partial}{\partial n} (n - r)
18,879
1 + (74 + 1)/100 + \frac14 + 1 + \frac{1}{100}\cdot \left(74 + 1\right) = 3.75
-27,696
\cos(z)\cdot 16 = d/dz \left(16\cdot \sin(z)\right)
394
0\times \dots\times \pi\times 2 = 0
16,656
\frac{3/4*\dfrac34}{2} = 9/32
9,857
144=2\times72
11,286
\frac{2}{8} - \frac{5}{4} - \frac{k}{2} + 3 = 0 \implies k = 4
4,107
(\frac{1}{\zeta_j} + \zeta_j) * (\frac{1}{\zeta_j} + \zeta_j) = \zeta_j^2 + 2 + \frac{1}{\zeta_j * \zeta_j}
-3,194
(2 + 1 + 4) \cdot 13^{1/2} = 13^{1/2} \cdot 7
3,848
|-ba + b_n a_n| = |-ba + a_n b_n - ba_n + a_n b|
869
2 = \left(0 + 1\right) \cdot 2^1
-2,430
\sqrt{13}\times 7 = \sqrt{13}\times (3 + 5 + \left(-1\right))
2,214
\sin{\frac{π}{4}} = \cos{π/4} = \sqrt{2}/2
-5,530
\frac{3}{q \cdot 3 + 30 \cdot (-1)} = \tfrac{3}{(10 \cdot (-1) + q) \cdot 3}
-28,922
\dfrac{1}{7 \times \frac{1}{20}} \times 7 = 7 \times \frac{20}{7} = 20
21,439
E((A - E(A))^2) = E(A \cdot A) - E(A)^2
-7,197
6/49 = \frac{2}{7}*\frac{1}{7} 3
5,124
\frac38 = 1/8 \cdot 3
368
\frac{5}{12} = \frac{1}{3\cdot 2} + 1/(2\cdot 2)
36,370
n^2 - n \cdot n - n = n
16,897
36 + 24 \left(-1\right) = 12
23,131
\left(x/2 + 5(-1)\right)^2 + x^2 = (3 + x/2)^2 + (x + 4(-1))^2
-15,255
\frac{1}{\frac{z^4}{q^{20}}*q^5} = \frac{1}{(\frac{z}{q^5})^4*q^5}
-1,210
-\frac{3}{5} \cdot 9/1 = ((-3) \cdot 1/5)/(1/9)
506
\frac{1}{g*h} = 1/\left(g*h\right) \Rightarrow g*h = g*h
1,389
g = \sqrt{g} \cdot \sqrt{g}
23,261
x^{d + c} = x^c x^d
3,744
g \cdot 7 - 3 \cdot f = g + 6 \cdot g - 3 \cdot f
11,492
\tfrac11*(10 + 6*(-1)) = \frac15*(18 + 2) = (26 + 2)/7
-20,804
\frac{1}{-6*k + 10*\left(-1\right)}*7*\frac99 = \frac{63}{-54*k + 90*(-1)}
12,182
k - 2\cdot n + 1 = k - n - n + (-1)
2,713
\left(2(k + 1)\right)! = \left(2k + 2\right)! = 2k! (2k + 1) (2k + 2)
-7,606
\frac{1}{-(-4*i)^2 + 1 * 1}*(1 + 4*i)*(-14 + i*5) = \frac{(-14 + i*5)*\left(i*4 + 1\right)}{\left(-i*4 + 1\right)*\left(i*4 + 1\right)}
36,449
\left(3\cdot q\right)^2 = 3\cdot q\cdot 3\cdot q = 9\cdot q^2
-2,428
\sqrt{13} \cdot \left(5 + 1\right) = 6 \cdot \sqrt{13}
26,481
\left(4 \cdot \left(-1\right) + z\right)^2 = z^2 - 8 \cdot z + 16
40,839
1 = X X + 2 = X^3 + X + 1
-19,386
8\cdot \frac{1}{3}/(5\cdot \dfrac18) = \tfrac{8}{5}\cdot \frac{1}{3} 8
2,038
|x| = \|x\times h_0\| = \|-x\times h_0\|
-20,355
\frac{1}{2}9 \frac{1}{z + 2(-1)}(z + 2(-1)) = \frac{1}{4\left(-1\right) + z*2}(z*9 + 18 (-1))
31,953
-z! + \theta^2 = 2001 \Rightarrow \theta \cdot \theta = z! + 2001
-16,586
99^{\frac{1}{2}}*4 = 4 (9*11)^{\frac{1}{2}}
-5,622
\dfrac{1}{3 \cdot (q + 9 \cdot (-1))} \cdot 4 = \frac{4}{27 \cdot (-1) + q \cdot 3}
-5,460
\frac{1}{98 \cdot (-1) + 2 \cdot x^2} \cdot (6 \cdot x + 42 \cdot (-1) - x + 7 \cdot (-1) + 4 \cdot (-1)) = \frac{1}{x^2 \cdot 2 + 98 \cdot (-1)} \cdot (x \cdot 5 + 53 \cdot (-1))
19,706
y^2 + z^2*4 + 5*z*y = (y + z)*(y + 4*z)
29,474
\frac{1}{x + 2} \cdot (b + x^3 + a \cdot x) = x^2 - 2 \cdot x + a + 4 + \frac{1}{x + 2} \cdot \left(-(a + 4) \cdot 2 + b\right)
7
-\operatorname{E}\left[X_2\right] + \operatorname{E}\left[X_1\right] = \operatorname{E}\left[-X_2 + X_1\right]
6,745
(\tfrac13) * (\tfrac13) + (\frac13*2) * (\frac13*2) = 5/9 \lt 1 + 1
9,423
4 + (-1) + 3\cdot (-1) = 10\cdot (-1) + 1 + 9
7,525
\sin(\left(-z\right)^2) = \sin{z \cdot z}
14,504
(7^{1/2}\cdot 3 + 7)/2 = 7/2 + \dfrac{3\cdot 7^{1/2}}{2}
-19,728
7\cdot 6/\left(8\right) = \dfrac{42}{8}
24,194
1^3 - 3 \cdot 1^2 + \left(-1\right) + 3 = 1 + 3 \cdot \left(-1\right) + (-1) + 3 = 0
-16,528
4*\sqrt{4}*\sqrt{3} = 4*2*\sqrt{3} = 8*\sqrt{3}
17,674
\left(n + 1\right)^3 = n^2 \cdot n + 3 \cdot n^2 + n \cdot 3 + 1
8,319
2N * N = (\sqrt{2} N)^2
-20,430
\frac{1}{3 + z} \cdot \left(z + 3\right) \cdot (-\frac{7}{4}) = \dfrac{1}{12 + z \cdot 4} \cdot (-z \cdot 7 + 21 \cdot (-1))
-29,166
2 \times 5 + 3 \times 2 = 16
16,155
(-1)^{-m + 1} = \left(-1\right)^{-m + 1} (-1)^{2m} = (-1)^{m + 1}
-20,561
\frac{-27*x + 12}{4 - 9*x} = \frac{1}{1}*3*\frac{4 - x*9}{4 - 9*x}
33,195
\frac{8*(-1) + 28}{4*\left(-1\right) + 8} = 5
13,980
Q^4 + 1 = \left(Q^2 + (-1)\right)^2 - \left(cQ\right)^2 = (Q^2 - cQ + (-1)) (Q^2 + cQ + (-1))
9,778
\frac{1}{40}\cdot (3000 + 2\cdot x) = \dfrac{3000}{40} + \frac{2\cdot x}{40} = 75 + x/20
-3,204
\sqrt{2} \sqrt{25} + \sqrt{9} \sqrt{2} = \sqrt{2}\cdot 5 + \sqrt{2}\cdot 3
2,185
x \cdot 6 + 5 \cdot \left(-1\right) = x + 5 \cdot x + 6 \cdot (-1) + 1
-20,595
\frac{20}{5*(-1) + 25*z}*z = \frac{4*z}{5*z + (-1)}*1*5/5
-22,057
\frac72 = \frac{21}{6}
11,287
\sin{\frac{5\cdot \pi}{2}} = \sin{\pi/2} = 1
10,584
E[A A] = E[A]^2 + VAR[A]
20,956
x^T\times A\times x = (x^T\times A\times x)^T = x^T\times A^T\times x = -x^T\times A\times x