id
int64
-30,985
55.9k
text
stringlengths
5
437k
4,139
6^3 + 1^3 + 8^3 = (8 + 1)^3
13,791
-(x + 1)\cdot (x + 2\cdot (-1))\cdot 3 = -3\cdot x^2 + x\cdot 3 + 6
18,864
\sin{\pi/2} = \cos{2 \times \pi}
47,679
\lim_{x \to \pi/2} \frac{\tan{5 \cdot x}}{\tan{3 \cdot x}} = \lim_{x \to \frac{\pi}{2}} \frac{\cos{3 \cdot x}}{\cos{5 \cdot x}} \cdot \lim_{x \to \pi/2} \frac{1}{\sin{3 \cdot x}} \cdot \sin{5 \cdot x} = -\lim_{x \to \frac{1}{2} \cdot \pi} \frac{\cos{3 \cdot x}}{\cos{5 \cdot x}}
19,545
g'\cdot H' = H\cdot h \implies h\cdot H/g' = H'
19,159
\left(h + 1\right)\cdot \left(h^2 - h + 1\right) = 1 + h^3
21,099
\left(2\cdot B\right)^2 = 2^2\cdot B^2 = 4\cdot B \cdot B
-22,216
(t + 10)*(t + 9) = t^2 + 19*t + 90
12,527
\dfrac{228 + 204\cdot \left(-1\right)}{6\cdot 12} = 1/3
25,042
26 * 26 = 10^2 + 24 * 24
5,311
\frac26\cdot (-\sqrt{-5} + 1) = \dfrac{1}{1 + \sqrt{-5}}\cdot 2
-1,618
\dfrac{23}{12} \pi + \frac{1}{12}17 \pi = 10/3 \pi
-8,131
\frac{5\cdot 6}{2} = 15
39,264
6 = 5^2 - 5 \cdot 5 + 6
38,985
-(2 (-1) + z) = -z + 2
15,337
\left(-1 * 1 + 2^2\right)^{1/2} = 3^{1/2}
-9,298
12 + j\cdot 4 = 2\cdot 2\cdot 3 + 2\cdot 2 j
-11,612
15 + 15 \cdot (-1) - 30 \cdot i = -30 \cdot i
-24,762
\frac14\cdot (-\sqrt{6} + \sqrt{2}) = \sin{13\cdot \pi/12}
624
\left(y!\right)! \gt (y^2)^{y! - y \cdot y} = y^{2y! - 2y \cdot y} > y^{y!}
-5,969
\frac{1}{t \cdot t + t\cdot 7 + 6}\cdot 3 = \frac{1}{\left(t + 6\right)\cdot (t + 1)}\cdot 3
3,636
\dfrac{1 + n}{2 \left(n + (-1)\right)!} = \frac{1}{2 (n + 2 (-1))!} + \frac{1}{(n + (-1))!}
20,617
(b \cdot b + a^2 - b \cdot a) \cdot (b + a) = b^3 + a^3
384
(q - p)^2 = p^2 - qp\cdot 2 + q^2
-18,215
72 + 14 (-1) = 58
9,873
\N_{x} \coloneqq \left\{1, \ldots, x\right\}
-4,415
\left(y + 1\right)*(4 + y) = 4 + y^2 + 5*y
25,434
\dfrac3x - \tfrac12\cdot x = 3/x - x/2
-2,309
1/17 = \frac{1}{17}*7 - 6/17
21,207
0 < (7 - x)^{1/2} - (7 - z)^{1/2} = \frac{z - x}{(7 - x)^{1/2} + (7 - z)^{1/2}} \lt (z - x)/2
10,278
1 + 3 + \dotsm + 2 \cdot \left(n + 1\right) + \left(-1\right) = (n + 1)^2
-3,656
\dfrac{63\cdot q}{q^4\cdot 70} = 63/70\cdot \frac{1}{q^4}\cdot q
1,622
7 = -1^2*2 + 3^2
9,008
\frac{1}{2}\cdot x = x - x/2
14,358
xy = z\Longrightarrow |z|^2 = |y|^2 |x|^2
19,366
1 < |y|\Longrightarrow 1 > 1/|y|
-6,023
\tfrac{1}{\left(5(-1) + l\right) (l + 10)}2 = \frac{2}{l * l + 5l + 50 (-1)}
13,717
1 - x^c - 1 - x^h = -x^c + x^h
-1,130
-5/3 \cdot 6/1 = (\frac{1}{3} \cdot (-5))/\left(\dfrac{1}{6}\right)
14,550
g = \lim_{n \to \infty} \sin(n)\Longrightarrow g \in (-1, 1) = \lim_{n \to \infty} \sin(n*2)
31,424
\frac{1}{1 - x^2} = \sum_{i=0}^\infty (x^2)^i = \sum_{i=0}^\infty x^{2\cdot i}
21,392
\tan{x} = \frac{2\cdot \tan{\frac{1}{2}\cdot x}}{1 - \tan^2{\dfrac{x}{2}}} \gt 2\cdot \tan{x/2}
-20,671
\frac{1}{x\cdot 10 + 40\cdot (-1)}\cdot \left(70 + x\cdot 10\right) = \dfrac{1}{x + 4\cdot (-1)}\cdot (7 + x)\cdot \dfrac{10}{10}
35,966
-\frac23 = -\frac{1}{3}\cdot 2
16,978
(S + 1)^2 = S^2 + 2S + 1 \geq S + 1
3,415
(16 \cdot S^4 \cdot r^2 + 1) \cdot 4 = 4 + S^4 \cdot r^2 \cdot 64
22,038
\frac{1}{x^{\frac{1}{2}}} = x^{-\frac12}
15,154
\cos(\alpha) = 3/(\sqrt{10}) \Rightarrow \sin(\alpha) = 1/(\sqrt{10})
-14,661
96 + 80 + 96 + 95 + 87 + 86 = 540
-2,446
50^{1/2} + 18^{1/2} = (9\cdot 2)^{1/2} + \left(25\cdot 2\right)^{1/2}
7,073
a \lt -1 \Rightarrow a^2 = |a| + (-1)
-446
(e^{\pi\cdot i\cdot 4/3})^{16} = e^{16\cdot \pi\cdot i\cdot 4/3}
15,807
\left(y + 1\right)^3 - y^3 + 1 = 3*(y + y * y)
-9,498
30 \cdot t + 5 = t \cdot 2 \cdot 3 \cdot 5 + 5
38,823
4/7\times 1/2/2\times 3/5 = \frac{3}{35}
13,544
-z + x = -(z + 1) + x + 1
-1,378
\frac{4 \cdot 1/5}{3 \cdot \frac12} = 2/3 \cdot \frac15 \cdot 4
14,575
4 + 36 + 4\cdot e + 12\cdot x + a = 0 \Rightarrow a + 4\cdot e + x\cdot 12 = -40\cdot ...\cdot 3
20,957
(2L + L)/3 = L
33,651
\frac{1}{2\cdot (1 + \frac{z^2\cdot 3}{2}\cdot 1)} = \frac{1}{3\cdot z^2 + 2}
26,371
F = -x + H \Rightarrow x + F = H
24,641
\Delta \times z = z + z \times \Delta - z
13,945
b^y = \left(\dfrac{1}{b}\right)^{-y} = \left(\frac1b\right)^{-y}
32,339
49 = (b\cdot a + h\cdot b + a\cdot h)\cdot 2 + 23 \Rightarrow 13 = h\cdot a + b\cdot a + b\cdot h
-6,094
\frac{1}{((-1) + x)*(9 + x)}*3 = \frac{1}{9*\left(-1\right) + x * x + 8*x}*3
11,855
40/7 = (4\times 7 + 12)/7 = 4 + 12/7
24,224
(H_1*H_2*\cdots*H_l*H_{(-1) + l})^R = H_l^R*H_{(-1) + l}^R*\cdots*H_2^R*H_1^R
23,295
\sin(z) = \sum_{m=0}^\infty a_m \cdot z^m = z + \sum_{m=2}^\infty a_m \cdot z^m
28,834
\cos\left(B\right) = 2 \cdot \cos^2(B/2) + \left(-1\right) = 1 - 2 \cdot \sin^2(\dfrac{B}{2})
13,468
(3\cdot a + 2007) \cdot (3\cdot a + 2007) = (3\cdot (a + 669))^2 = 9\cdot (a + 669)^2
10,371
a*g = -a*\left(-g\right)
-7,682
\dfrac{4 - 18i - 2i - 9}{5} = \dfrac{-5 - 20i}{5} = -1-4i
15,159
n/n! = \frac{1}{((-1) + n)!}
27,420
(9 a + 80 \varepsilon)^2 - 80 (a + 9 \varepsilon) (a + 9 \varepsilon) = -80 \varepsilon^2 + a^2
222
4\cdot \left(-1\right) + 3\cdot x = 0\Longrightarrow 4/3 = x
18,115
-l + x - j = x - l + j
1,598
\binom{l_1}{l_1 - l_2} = \dfrac{1}{(l_1 - l_2)!\cdot (l_1 - l_1 - l_2)!}\cdot l_1! = \frac{l_1!}{(l_1 - l_2)!\cdot l_2!} = \binom{l_1}{l_2}
-14,051
(8 + 1 - 3\cdot 8)\cdot 4 = \left(8 + 1 + 24\cdot \left(-1\right)\right)\cdot 4 = (8 - 23)\cdot 4 = (8 + 23\cdot (-1))\cdot 4 = \left(-15\right)\cdot 4 = (-15)\cdot 4 = -60
-3,567
\frac{x^5 \cdot 96}{x \cdot 64} 1 = x^5/x \cdot 96/64
10,645
(e^{-i*t}/2 + e^{i*t}/2)^k = \cosh^k{i*t} = \cos^k{t}
-20,998
-\dfrac{6}{7} \cdot (-3/(-3)) = 18/(-21)
2,265
x_I/g = x_C/a rightarrow x_C \cdot g/a = x_I
50,902
\frac{1}{\gamma^2\cdot (1 - u/\gamma) \cdot (1 - u/\gamma)} - \frac{1}{\gamma \cdot \gamma} = \frac{1}{\gamma^2}\cdot \sum_{k=1}^\infty \left(k + 1\right)\cdot (u/\gamma)^k = \sum_{k=1}^\infty (k + 1)\cdot \frac{u^k}{\gamma^{k + 2}}
6,978
(-(-g + h)^2 + (h + g)^2)/4 = gh
15,679
-z^2 + 1 = \tfrac{-z^4 + 1}{1 + z \cdot z}
12,885
\binom{m}{\left(-1\right) + k} + \binom{m}{k} = \binom{m + 1}{k}
30,570
360 = {5 \choose 2} \cdot {9 \choose 2}
6,066
\sin\left(\beta\right) = \frac{15}{17} \implies \cos(\beta) = \frac{1}{17}\cdot 8
27,510
\sqrt{2 + x} = x \implies x = 2
2,181
B_2\cdot a = a\cdot B_2
3,664
\frac{1}{z + (-1)} - \frac{1}{3 + z} = \tfrac{1}{(\left(-1\right) + z) (3 + z)}4
-151
\binom{5}{3} = \frac{5!}{\left(5 + 3 \cdot (-1)\right)! \cdot 3!}
15,073
1 = \frac{2 + 2}{2 + 2} = \dfrac22 + 2/2 = 2
14,108
s/R = \frac{1}{R}\cdot s
30,014
d^{2 \cdot n} \cdot d^{2 \cdot m} = d^{2 \cdot \left(m + n\right)}
29,193
-\left(b\times 2\right) \times \left(b\times 2\right)\times m + \left(2\times a\right)^2 = (a^2 - m\times b^2)\times 4
12,040
a^2 + ag*2 + g^2 = (a + g)^2
30,079
(BA)^2 = A^2 B^2
2,497
a + 1 = (a + 1)^2 = a * a + 2a + 1
36,263
2 \cdot 2 - 3\cdot 1^2 = 1