id
int64
-30,985
55.9k
text
stringlengths
5
437k
1,880
\int \sqrt{(-y + 2) (y + 2)} y \cdot y \cdot y\,dy = \int y \cdot y \cdot y \sqrt{2^2 - y^2}\,dy
38,875
\frac{1}{\frac{1}{0}} = 1/(\dfrac10)
27,481
1 + t^3 - t^2 + t^2 - t + t + (-1) = t^3
1,699
(3 \cdot l + 1) \cdot (3 \cdot l + 1) = (-(3 \cdot l + 1))^2
-24,426
6 + \dfrac{6}{2} = 6 + 3 = 9
1,490
\left(0 = 4 + x \times x - y^2 - 4 \times x \implies (2 \times \left(-1\right) + x)^2 - y^2 = 0\right) \implies 0 = (x + 2 \times \left(-1\right) - y) \times (x + 2 \times (-1) + y)
683
x^2 + 4*x + 5*\left(-1\right) = x^2 + 4*x + 4 + 9*\left(-1\right) = (x + 2)^2 + 9*(-1) = (x + 2)^2 - 3^2
-8,939
17.5\% = \tfrac{1}{100}\cdot 17.5
-22,316
(n + 8)\cdot \left(3 + n\right) = 24 + n \cdot n + 11\cdot n
12,492
2/x = \frac{2*x}{x * x}
-16,343
7 \cdot 25^{\frac{1}{2}} \cdot 5^{1 / 2} = 7 \cdot 5 \cdot 5^{\frac{1}{2}} = 35 \cdot 5^{1 / 2}
26,228
31213 = 7^4 \times 13
9,497
e\times a + a\times g = a\times (g + e)
36,507
2*0.05 = \tfrac{10}{100}*1 = 1/10
-20,181
\frac{1}{s\cdot 28 + 7\cdot (-1)}\cdot (\left(-28\right)\cdot s) = 7/7\cdot \frac{1}{s\cdot 4 + \left(-1\right)}\cdot (\left(-4\right)\cdot s)
30,504
-s + 3*(2*e - 3*s) = e*6 - 10*s
6,673
(-1) + 2 \cdot \cos^2(w) = \cos(2 \cdot w)
-2,460
2\cdot \sqrt{7} = (2\cdot (-1) + 4)\cdot \sqrt{7}
31,273
WT = TW
582
\frac12 = 1 + (-1) + 1 + (-1) + 1 + \dotsm
27,753
1 - -2\cdot x + 1 = x\cdot 2
-22,205
45 \cdot (-1) + b^2 - b \cdot 4 = (b + 9 \cdot (-1)) \cdot (5 + b)
-5,737
\frac{4}{3\cdot x + 9\cdot \left(-1\right)} = \frac{4}{3\cdot (3\cdot (-1) + x)}
29,216
\frac{(-1) - 7}{\left(1 - 7\right)^3} = 1/27
-5,531
\frac{5}{(k + 8 \left(-1\right))\cdot 3} = \dfrac{1}{24 \left(-1\right) + k\cdot 3} 5
-7,786
\left(16 - 144\cdot i - 16\cdot i + 144\cdot \left(-1\right)\right)/32 = (-128 - 160\cdot i)/32 = -4 - 5\cdot i
-10,327
\frac{2 \cdot 1/2}{3 \cdot y + 5 \cdot (-1)} = \frac{2}{6 \cdot y + 10 \cdot (-1)}
-10,299
-\frac{5}{x\cdot 15 + 15\cdot (-1)} = 5/5\cdot (-\dfrac{1}{3\cdot (-1) + 3\cdot x})
7,738
x\cdot \lambda_2 + \lambda_1\cdot x = x\cdot \left(\lambda_2 + \lambda_1\right)
11,192
42/132 = \frac{6}{11}*7/12
11,599
2 \cdot 6 + 3 \cdot 5 + 2 \cdot 2 + 2 \cdot 4 = 2 \cdot (2 + 5) + (5 + 6) \cdot 2 + 2 \cdot (5 + 4) - 3 \cdot 5
45,199
2^n \sin\left(\dfrac{1}{2^n}z\right) = 2^n*(\frac{z}{2^n} - \frac{1}{3!}(\tfrac{1}{2^n}z)^2 * (\frac{1}{2^n}z) + \cdots) = z - \frac{1}{3!*2^{2n}}z^3 + \cdots
4,317
-(x - \dfrac{9}{2}) = 0 \implies x = -\frac92
-22,834
\dfrac{9 \cdot 5}{2 \cdot 9} = 45/18
4,710
\dfrac{1}{16^{3/4} \cdot 27^{2/3}} = \frac{1}{(27 \cdot 27)^{\frac{1}{3}} (16^2 \cdot 16)^{\frac14}}
89
\binom{8}{3}*\left(\frac{5}{3} + 5/4\right)*\binom{7}{2} = 3430
6,814
1 - 9/16 = \frac{1}{16} \cdot 7
3,090
|X| |B| = |X B|
30,414
2*2*7! = 7!*4
10,685
1100 = -\frac12\times 50\times 50 + 3600 - \dfrac{1}{2}\times 50\times 50
13,206
x - 1 - x = x \cdot 2 + (-1)
26,436
cf = ef \Rightarrow 0 = (-c + e) f
29,553
x!^2 \cdot (x + 1) = (x + 1)! \cdot x!
-18,392
\dfrac{s^2 + 2*s + 1}{s^2 + s*3 + 2} = \tfrac{(s + 1)*(s + 1)}{(2 + s)*\left(1 + s\right)}
2,943
e^n = e^{\frac{1}{\tfrac{1}{n}}}
34,697
n/2 \leq k\Longrightarrow n/2 \geq -k + n
257
\dfrac{k!}{(2 \cdot k)!} = ((k + 1) \cdot \dotsm \cdot 2 \cdot k)^{-1} < \frac{1}{k^k}
24,103
\frac{x!}{\left(x - s\right)! \cdot s!} = {x \choose s}
14,278
\binom{x + 1}{k} = \binom{x}{k} + \binom{x}{k + (-1)}
-29,100
9 \times (-8) = -72
43,051
|-z + H| = |-z + H|
3,036
0 + x^3 + x^2 + x \cdot 0 = \left(0 + x\right)^2 \cdot (x + 1)
9,131
(r^z + 3) \cdot (r^z + (-1)) + 4 = r^{2 \cdot z} + 2 \cdot r^z + 1 = \left(r^z + 1\right)^2
27,204
\cos\left(a - b\right) = \sin{a}\cdot \sin{b} + \cos{a}\cdot \cos{b}
-1,384
-7/3*7/2 = \frac{7*\tfrac{1}{2}}{1/7*(-3)}
8,539
\frac{\frac{1}{27}*4}{180} = 1/1215
54,743
-\int \cos(z)\,\mathrm{d}z = \int \sin(z)\cdot \sec^3(z)\,\mathrm{d}z
6,276
\int_{-e}^e b\,\mathrm{d}y = 2\cdot \int\limits_0^e b\,\mathrm{d}y
47,387
1 + H + x = x + 1 + H
17,512
\frac{\sqrt{2}}{2} = \cos(\frac{1}{4} \pi)
24,702
2\cdot \left(a_i + 2\cdot (-1)\right) = 2\cdot a_i + 4\cdot (-1) \gt a_i
4,621
0 = (2 + \sqrt{4}) (2 - \sqrt{4})
25,749
p \cdot l + k \cdot p = p \cdot (l + k)
-20,384
\frac{(-1)*4 r}{-20 r + 16 \left(-1\right)} = \frac{(-1) r}{-5r + 4(-1)} \frac44
3,365
x*(5(-1) + a) + (x + (-1)) (x^2 - x*4 + 1) = x^3 - 5x^2 + ax + (-1)
19,357
(1 - u + a\cdot u)/a = \left(1 + (-1 + a)\cdot u\right)/a = \frac{1}{a}\cdot \left(1 - (1 - a)\cdot u\right)
-2,213
-\frac{1}{14} + \frac{1}{14}\cdot 3 = 2/14
6,090
19^{17} \cdot 19^{16} \cdot 12^{17} = 12^{17} \cdot 19^{33}
-1,666
\pi \frac1613 = \pi \cdot 11/12 + 5/4 \pi
31,506
(n + (-1))/(2\cdot n) = \frac{1}{2}\cdot (1 - \frac{1}{n}) = 1/2 - 1/\left(2\cdot n\right)
34,861
(6 + 6) \times 4 = 48
13,745
3^3 + 5 \cdot 1^3 + 4 (-2)^2 (-2) = 27 + 5 - 4 \cdot 8 = 0
21,738
(3z + 1) (z + 2(-1)) = \left(z + 1/3\right) (z + 2(-1))\cdot 3
-16,437
10\times \sqrt{16}\times \sqrt{11} = 10\times 4\times \sqrt{11} = 40\times \sqrt{11}
25,314
84 + 42*(-1) = 42
27,905
(-1) + p^{32} = (p^{16} + 1) \cdot \left(p^8 + 1\right) \cdot (1 + p^4) \cdot (1 + p^2) \cdot (p + 1) \cdot \left(p + (-1)\right)
-1,424
\dfrac{1}{(-7) \cdot 1/8}((-1) \cdot 4 \cdot 1/3) = -\frac43 (-\frac87)
19,562
e^{-i \cdot l \cdot \pi} = \cos{l \cdot \pi} - i \cdot \sin{l \cdot \pi} = \left(-1\right)^l
9,876
(1 + c^{1/2}) \cdot \left(-c^{1/2} + 1\right) = 1 - c
-3,038
6^{1/2} \cdot 5 + 4 \cdot 6^{1/2} = 16^{1/2} \cdot 6^{1/2} + 6^{1/2} \cdot 25^{1/2}
19,389
87 + m^2 - 20*m = -(-2)*\frac{1}{2}*(m^2 - m*20 + 87)
19,577
2071 = 19^3 - yz\cdot 57 \implies 84 = zy
41,378
|a*b| = |b*a|
14,121
11 = (23 + (-1))/2
35,960
-(-1)^{n + \left(-1\right)} = (-1)^n
14,221
-\sqrt{2}*2 + 3 = \frac{1}{3 + \sqrt{2}*2}
-1,507
5/9 \cdot \frac{4}{3} = \dfrac{\frac{4}{3}}{9 \cdot \frac{1}{5}} \cdot 1
16,996
(1 + 2^{182}) \cdot (2^{364} - 2^{182} + 1) = 2^{546} + 1
5,878
|Y| \cdot |B| = |B \cdot Y|
5,146
-\frac{p^3}{1 + p} + 1 - p + p^2 = \frac{1}{1 + p}
-16,426
7*\sqrt{16*11} = \sqrt{176}*7
252
1/\left(b\cdot g\right) + \frac{1}{b\cdot g\cdot \left(\left(-1\right) + g\right)} = \frac{1}{b\cdot ((-1) + g)}
21,143
217 = (20 \cdot x + 3) \cdot r + \dfrac{1}{20} \cdot \left(20 \cdot x + 3 + 3 \cdot (-1)\right) = (20 \cdot x + 3) \cdot (r + 1/20) - 3/20
20,773
\left(k + 1\right)^3 + 1 = k^3 + 3\times k^2 + 3\times k + 2 \gt 4\times k^2 + 4\times k + 1
42,148
1612800 - 3\cdot 33600 = 1512000
13,456
(27*e^{i*2*x*\pi})^{1/3} = 3*(e^{i*2*x*\pi})^{\dfrac{1}{3}} = 3*e^{i*2*x*\pi/3}
15,394
\frac{7^{55}}{5^{72}} = 7 \cdot (\frac{1}{5^4} \cdot 7 \cdot 7^2)^{18}
22,944
\left(z + \left(-1\right)\right)\cdot \left(z - e^{2\cdot \pi/m}\right)\cdot \cdots\cdot e^{2\cdot \pi\cdot (\left(-1\right) + m)/m} = z^m + (-1)
28,870
C_1\cdot E_2 = C_2\cdot E_2 \Rightarrow C_1\cdot C_2 = E_2\cdot C_1\cdot 2
14,099
-b\cdot (-1) + a = a + b