id
int64
-30,985
55.9k
text
stringlengths
5
437k
4,767
m + 4\cdot (-1) = 1 \implies m = 5
-628
\dfrac{\pi}{6} = 85/6\cdot \pi - 14\cdot \pi
-3,222
\sqrt{2} \cdot \left(3 + 5\right) = 8 \cdot \sqrt{2}
21,036
\frac{X}{X \cdot X} = \frac1X
4,010
\cos(\frac{\pi}{4}2) = 0
4,610
c^3 = a^3 + b \cdot b^2 = (a + b) (a^2 + ab + c^2)
-560
e^{3i\pi/12} = (e^{\frac{i\pi}{12}})^3
24,427
r\cdot k = k\cdot r
7,102
16^{\dfrac143} = (16 * 16 * 16)^{1/4}
14,791
\left( a\cdot I, h\cdot x\right) = \left( I, x\right)\cdot ( a, h)
-9,404
5\cdot 5 + 3\cdot 5\cdot z = 25 + 15\cdot z
12,857
\mathbb{E}[V_2] \mathbb{E}[V_1] = \mathbb{E}[V_1 V_2]
-10,758
-\dfrac{1}{V^3*10}10*\frac{4}{4} = -\frac{40}{40 V^3}
-10,554
\tfrac{1}{60\cdot (-1) + y\cdot 15}\cdot (y\cdot 15 + 30) = \tfrac{y\cdot 3 + 6}{3\cdot y + 12\cdot (-1)}\cdot 5/5
-27,626
-1 + 3 \times (-1) + 9 + 5 \times (-1) = -4 + 9 + 5 \times (-1) = 5 + 5 \times \left(-1\right) = 0
30,198
x a = x a
36,378
d^8 = d^{4 + 4}
-20,787
\frac{1}{\left(-2\right) \cdot j} \cdot (-3 \cdot j + 3 \cdot \left(-1\right)) \cdot \frac33 = \dfrac{1}{j \cdot (-6)} \cdot (9 \cdot (-1) - 9 \cdot j)
11,237
\frac{1}{\tan^2(\arctan(z)) + 1} = \frac{1}{1 + z^2}
-5,578
\frac{1}{y^2 - y\cdot 2 + 8\cdot (-1)} = \frac{1}{(y + 2)\cdot (4\cdot \left(-1\right) + y)}
24,769
1 - x^3 = (1 - x) \left(1 + x^2 + x\right)
21,439
\mathbb{E}[(V - \mathbb{E}[V])^2] = -\mathbb{E}[V]^2 + \mathbb{E}[V \cdot V]
-20,295
-9/8\cdot \frac{6\cdot (-1) + q}{q + 6\cdot (-1)} = \dfrac{1}{8\cdot q + 48\cdot (-1)}\cdot \left(-9\cdot q + 54\right)
-587
(e^{\frac{i*\pi*23}{12}})^{16} = e^{23*i*\pi/12*16}
-4,292
\frac19 \cdot 10/n = \frac{10}{9 \cdot n}
14,710
\left(y^Q*G*y\right)^Q = y^Q*G^Q*y = -y^Q*G*y
-24,137
2 + 9 \times 8 = 2 + 72 = 74
13,976
(x + 1)! = (x + 1) \cdot x \cdot (x + (-1)) \cdot \cdots \cdot 2
27,366
\left(\sqrt{f}\right)^2 = f
39,779
\tfrac{1}{128}*15 = \frac{120}{1024}
6,926
\frac{1}{r}\left(xr + 1\right) = \frac1r + x
8,600
b\cdot a\cdot b = b\cdot \frac{a}{b}\cdot b \cdot b
-10,357
-9/(n\cdot 12)\cdot \frac33 = -\dfrac{27}{n\cdot 36}
26,893
z = -\frac{1}{2} (-2z)
7,936
y^3 + 27*(-1) = (y^2 + 3*y + 9)*(y + 3*(-1))
35,529
\frac{1}{x^b}*x^a = x^{a - b} = \frac{1}{x^{b - a}}
-22,549
-\dfrac89 \cdot (-4/9) = \tfrac{\left(-8\right) \cdot \left(-4\right)}{9 \cdot 9} = 32/81
-2,221
\frac{3}{19} = 10/19 - \frac{1}{19}*7
931
z*e^z = x \implies z = x*e^{-z}
-6,137
\frac{4}{3\cdot z + 27} = \frac{1}{3\cdot \left(z + 9\right)}\cdot 4
-4,362
28/4 \cdot \frac{1}{t^5} \cdot t^3 = \frac{t^2 \cdot t \cdot 28}{4 \cdot t^5}
35,406
(\left(-5\right)^2)^{\frac{1}{2}} = 25^{\frac{1}{2}} = 5
31,023
3\times 11^2 + 49\times \left(-1\right) = 314
9,637
xh c = (x^2 + h^2) c = (x * x + h * h)^2 + c^2
-22,266
f^2 - 7 \cdot f + 8 \cdot (-1) = (8 \cdot \left(-1\right) + f) \cdot \left(1 + f\right)
-4,498
\frac{1}{3 + y^2 - y\cdot 4}\cdot (-y\cdot 6 + 14) = -\frac{2}{y + 3\cdot (-1)} - \frac{1}{y + (-1)}\cdot 4
31,984
21841 (3*7*11*13)^2 = 196962334569
6,105
\frac{1}{8} = \frac{1}{2} \frac{1}{4}
27,276
6 \cdot i + 9 \cdot n = 2 \cdot 3 \cdot i + 3 \cdot 3 \cdot n = 3 \cdot (2 \cdot i + 3 \cdot n)
-2,508
(25 \cdot 6)^{1/2} + 6^{1/2} + (9 \cdot 6)^{1/2} = 150^{1/2} + 6^{1/2} + 54^{1/2}
-2,950
4\cdot \sqrt{11} = (2 + 5 + 3\cdot (-1))\cdot \sqrt{11}
30,987
\left(f + d\right)^2 = f \cdot f + 2\cdot f\cdot d + d^2 = f^2 + 0\cdot f\cdot d + d^2 = f^2 + d^2
34,484
\alpha\times (-1) = -\alpha
16,574
-1 + 3*\left(-1\right) = -4
21,078
12 = \binom{4}{1}\cdot \binom{3}{1}\cdot \binom{2}{2}
-17,787
67 = 80 + 13 \left(-1\right)
18,609
C B = B C
6,525
\left(l\cdot B = B^{y_0} - B rightarrow (-1) + B^{(-1) + y_0} = l\right) rightarrow B^{y_0 + (-1)} = l + 1
-13,675
5 + 4*7 = 5 + 28 = 33
9,593
H \times z \times z \times H = z \times H \times z \times H
-7,933
\dfrac{1}{17}*(36 - 8*i - 9*i + 2*\left(-1\right)) = (34 - 17*i)/17 = 2 - i
10,095
-\tfrac{1}{5} + 1 - 1/5 = \frac{3}{5}
-6,437
\frac{4}{(5*(-1) + y)*(y + 10)} = \dfrac{1}{y * y + 5*y + 50*(-1)}*4
10,869
(\sqrt{z - G})^2 = -G + z
-20,994
-\frac{7}{4} \cdot \tfrac{-m + 9 \cdot (-1)}{-m + 9 \cdot (-1)} = \frac{7 \cdot m + 63}{-m \cdot 4 + 36 \cdot (-1)}
2,393
\binom{1}{1}\cdot \binom{3}{2}\cdot \binom{5}{2}\cdot \binom{7}{2} = \frac{1}{2!\cdot 2!\cdot 1!\cdot 2!}\cdot 7!
15,916
C\Longrightarrow 1 = C
-22,904
\frac{27}{90} = \tfrac{3 \cdot 9}{9 \cdot 10}
-11,711
25/36 = (\dfrac{1}{6}\times 5)^2
18,684
\frac13 + \dfrac{1}{6} = 1/2
1,527
x = k*2 \Rightarrow x*3 + (-1) = k*6 + (-1)
8,598
f^3 = f * f*f
8,662
2 (-t + s) = s*2 + 1 - 1 + t*2
18,866
(a + b) \cdot (a - b) = a^2 - b^2 \Rightarrow a + b = (a + b) \cdot \frac{a - b}{a - b} = \frac{1}{a - b} \cdot (a^2 - b \cdot b)
-1,487
4/3*(-\frac11*7) = \frac{1/3}{\left(-1\right)*\frac17}*4
7,490
2450 = 7^2 \cdot 5 \cdot 5 \cdot 2
-15,380
\frac{1}{n\frac{1}{\dfrac{1}{n^4} x^3}} = \frac{1}{n\frac{1}{x^3}n^4}
6,087
\dfrac{3 - 1.8}{5 + 2*(-1)} = \frac13*1.2 = \dfrac25
18,591
(X + 3)^2 = X^2 + 6 \times X + 9 = X \times X + 5 \times X + 7 + X + 2
-18,725
0.9912 = \left(-1\right)*0.0062 + 0.9974
-30,842
8 = 2(-1) + 10
9,084
\mathbb{E}(X_l\cdot X_j) = \mathbb{Cov}(X_l,X_j) + \mathbb{E}(X_l)\cdot \mathbb{E}(X_j) = \mathbb{Cov}(X_l,X_j)
8,973
x - \frac{1}{\sin{x} + 1}(x - \cos{x}) = x
6,846
1/2*\dfrac12 + 1/2*\frac12 = 1/2
-4,388
\frac{1}{y^3}y^2 = yy/(yy y) = 1/y
8,471
E - \frac13\cdot \left(A \cdot A - z^2\right)^{\frac12\cdot 3} = E - \sqrt{-z^2 + A \cdot A}\cdot (A^2 - z \cdot z)/3
34,867
\dfrac{1}{m^2} \cdot ((-1) + m)^2 = (1/m)^0 \cdot (((-1) + m)/m)^2
11,933
(2^m)^2 = 2^{2*m}
5,291
\frac{92\cdot 1/5}{100} = \frac{92}{500} = 23/125
32,235
a^2 + b^2 + a\cdot b\cdot 2 = (a + b)^2
31,549
8 + y \cdot y^2 + y^2 - 10\cdot y = ((-1) + y)\cdot (2\cdot (-1) + y)\cdot (4 + y)
41,170
a + 1 + \left(-1\right) = a
22,642
\left(5/3\right)^2 = \dfrac{1}{9}\cdot 25 \neq 3
-4,563
(3*\left(-1\right) + y)*(5*(-1) + y) = 15 + y^2 - 8*y
5,463
1/(g d) = 1/(d g)
19,028
60 = 8 \cdot 3 \cdot 5/2
34,355
\overline{\tau + x} = \overline{x} + \overline{\tau}
10,603
\dfrac{w}{w + 3\cdot (-1)} = \frac{w + 3\cdot (-1) + 3}{w + 3\cdot (-1)} = 1 + \frac{3}{w + 3\cdot (-1)}
20,807
(78804 + 33\cdot (-1))^{67} = 78771^{67}
31,324
0.8 = \frac{1}{12 + x}\cdot (7.8 + x)\Longrightarrow x = 9