id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,767 |
m + 4\cdot (-1) = 1 \implies m = 5
|
-628 |
\dfrac{\pi}{6} = 85/6\cdot \pi - 14\cdot \pi
|
-3,222 |
\sqrt{2} \cdot \left(3 + 5\right) = 8 \cdot \sqrt{2}
|
21,036 |
\frac{X}{X \cdot X} = \frac1X
|
4,010 |
\cos(\frac{\pi}{4}2) = 0
|
4,610 |
c^3 = a^3 + b \cdot b^2 = (a + b) (a^2 + ab + c^2)
|
-560 |
e^{3i\pi/12} = (e^{\frac{i\pi}{12}})^3
|
24,427 |
r\cdot k = k\cdot r
|
7,102 |
16^{\dfrac143} = (16 * 16 * 16)^{1/4}
|
14,791 |
\left( a\cdot I, h\cdot x\right) = \left( I, x\right)\cdot ( a, h)
|
-9,404 |
5\cdot 5 + 3\cdot 5\cdot z = 25 + 15\cdot z
|
12,857 |
\mathbb{E}[V_2] \mathbb{E}[V_1] = \mathbb{E}[V_1 V_2]
|
-10,758 |
-\dfrac{1}{V^3*10}10*\frac{4}{4} = -\frac{40}{40 V^3}
|
-10,554 |
\tfrac{1}{60\cdot (-1) + y\cdot 15}\cdot (y\cdot 15 + 30) = \tfrac{y\cdot 3 + 6}{3\cdot y + 12\cdot (-1)}\cdot 5/5
|
-27,626 |
-1 + 3 \times (-1) + 9 + 5 \times (-1) = -4 + 9 + 5 \times (-1) = 5 + 5 \times \left(-1\right) = 0
|
30,198 |
x a = x a
|
36,378 |
d^8 = d^{4 + 4}
|
-20,787 |
\frac{1}{\left(-2\right) \cdot j} \cdot (-3 \cdot j + 3 \cdot \left(-1\right)) \cdot \frac33 = \dfrac{1}{j \cdot (-6)} \cdot (9 \cdot (-1) - 9 \cdot j)
|
11,237 |
\frac{1}{\tan^2(\arctan(z)) + 1} = \frac{1}{1 + z^2}
|
-5,578 |
\frac{1}{y^2 - y\cdot 2 + 8\cdot (-1)} = \frac{1}{(y + 2)\cdot (4\cdot \left(-1\right) + y)}
|
24,769 |
1 - x^3 = (1 - x) \left(1 + x^2 + x\right)
|
21,439 |
\mathbb{E}[(V - \mathbb{E}[V])^2] = -\mathbb{E}[V]^2 + \mathbb{E}[V \cdot V]
|
-20,295 |
-9/8\cdot \frac{6\cdot (-1) + q}{q + 6\cdot (-1)} = \dfrac{1}{8\cdot q + 48\cdot (-1)}\cdot \left(-9\cdot q + 54\right)
|
-587 |
(e^{\frac{i*\pi*23}{12}})^{16} = e^{23*i*\pi/12*16}
|
-4,292 |
\frac19 \cdot 10/n = \frac{10}{9 \cdot n}
|
14,710 |
\left(y^Q*G*y\right)^Q = y^Q*G^Q*y = -y^Q*G*y
|
-24,137 |
2 + 9 \times 8 = 2 + 72 = 74
|
13,976 |
(x + 1)! = (x + 1) \cdot x \cdot (x + (-1)) \cdot \cdots \cdot 2
|
27,366 |
\left(\sqrt{f}\right)^2 = f
|
39,779 |
\tfrac{1}{128}*15 = \frac{120}{1024}
|
6,926 |
\frac{1}{r}\left(xr + 1\right) = \frac1r + x
|
8,600 |
b\cdot a\cdot b = b\cdot \frac{a}{b}\cdot b \cdot b
|
-10,357 |
-9/(n\cdot 12)\cdot \frac33 = -\dfrac{27}{n\cdot 36}
|
26,893 |
z = -\frac{1}{2} (-2z)
|
7,936 |
y^3 + 27*(-1) = (y^2 + 3*y + 9)*(y + 3*(-1))
|
35,529 |
\frac{1}{x^b}*x^a = x^{a - b} = \frac{1}{x^{b - a}}
|
-22,549 |
-\dfrac89 \cdot (-4/9) = \tfrac{\left(-8\right) \cdot \left(-4\right)}{9 \cdot 9} = 32/81
|
-2,221 |
\frac{3}{19} = 10/19 - \frac{1}{19}*7
|
931 |
z*e^z = x \implies z = x*e^{-z}
|
-6,137 |
\frac{4}{3\cdot z + 27} = \frac{1}{3\cdot \left(z + 9\right)}\cdot 4
|
-4,362 |
28/4 \cdot \frac{1}{t^5} \cdot t^3 = \frac{t^2 \cdot t \cdot 28}{4 \cdot t^5}
|
35,406 |
(\left(-5\right)^2)^{\frac{1}{2}} = 25^{\frac{1}{2}} = 5
|
31,023 |
3\times 11^2 + 49\times \left(-1\right) = 314
|
9,637 |
xh c = (x^2 + h^2) c = (x * x + h * h)^2 + c^2
|
-22,266 |
f^2 - 7 \cdot f + 8 \cdot (-1) = (8 \cdot \left(-1\right) + f) \cdot \left(1 + f\right)
|
-4,498 |
\frac{1}{3 + y^2 - y\cdot 4}\cdot (-y\cdot 6 + 14) = -\frac{2}{y + 3\cdot (-1)} - \frac{1}{y + (-1)}\cdot 4
|
31,984 |
21841 (3*7*11*13)^2 = 196962334569
|
6,105 |
\frac{1}{8} = \frac{1}{2} \frac{1}{4}
|
27,276 |
6 \cdot i + 9 \cdot n = 2 \cdot 3 \cdot i + 3 \cdot 3 \cdot n = 3 \cdot (2 \cdot i + 3 \cdot n)
|
-2,508 |
(25 \cdot 6)^{1/2} + 6^{1/2} + (9 \cdot 6)^{1/2} = 150^{1/2} + 6^{1/2} + 54^{1/2}
|
-2,950 |
4\cdot \sqrt{11} = (2 + 5 + 3\cdot (-1))\cdot \sqrt{11}
|
30,987 |
\left(f + d\right)^2 = f \cdot f + 2\cdot f\cdot d + d^2 = f^2 + 0\cdot f\cdot d + d^2 = f^2 + d^2
|
34,484 |
\alpha\times (-1) = -\alpha
|
16,574 |
-1 + 3*\left(-1\right) = -4
|
21,078 |
12 = \binom{4}{1}\cdot \binom{3}{1}\cdot \binom{2}{2}
|
-17,787 |
67 = 80 + 13 \left(-1\right)
|
18,609 |
C B = B C
|
6,525 |
\left(l\cdot B = B^{y_0} - B rightarrow (-1) + B^{(-1) + y_0} = l\right) rightarrow B^{y_0 + (-1)} = l + 1
|
-13,675 |
5 + 4*7 = 5 + 28 = 33
|
9,593 |
H \times z \times z \times H = z \times H \times z \times H
|
-7,933 |
\dfrac{1}{17}*(36 - 8*i - 9*i + 2*\left(-1\right)) = (34 - 17*i)/17 = 2 - i
|
10,095 |
-\tfrac{1}{5} + 1 - 1/5 = \frac{3}{5}
|
-6,437 |
\frac{4}{(5*(-1) + y)*(y + 10)} = \dfrac{1}{y * y + 5*y + 50*(-1)}*4
|
10,869 |
(\sqrt{z - G})^2 = -G + z
|
-20,994 |
-\frac{7}{4} \cdot \tfrac{-m + 9 \cdot (-1)}{-m + 9 \cdot (-1)} = \frac{7 \cdot m + 63}{-m \cdot 4 + 36 \cdot (-1)}
|
2,393 |
\binom{1}{1}\cdot \binom{3}{2}\cdot \binom{5}{2}\cdot \binom{7}{2} = \frac{1}{2!\cdot 2!\cdot 1!\cdot 2!}\cdot 7!
|
15,916 |
C\Longrightarrow 1 = C
|
-22,904 |
\frac{27}{90} = \tfrac{3 \cdot 9}{9 \cdot 10}
|
-11,711 |
25/36 = (\dfrac{1}{6}\times 5)^2
|
18,684 |
\frac13 + \dfrac{1}{6} = 1/2
|
1,527 |
x = k*2 \Rightarrow x*3 + (-1) = k*6 + (-1)
|
8,598 |
f^3 = f * f*f
|
8,662 |
2 (-t + s) = s*2 + 1 - 1 + t*2
|
18,866 |
(a + b) \cdot (a - b) = a^2 - b^2 \Rightarrow a + b = (a + b) \cdot \frac{a - b}{a - b} = \frac{1}{a - b} \cdot (a^2 - b \cdot b)
|
-1,487 |
4/3*(-\frac11*7) = \frac{1/3}{\left(-1\right)*\frac17}*4
|
7,490 |
2450 = 7^2 \cdot 5 \cdot 5 \cdot 2
|
-15,380 |
\frac{1}{n\frac{1}{\dfrac{1}{n^4} x^3}} = \frac{1}{n\frac{1}{x^3}n^4}
|
6,087 |
\dfrac{3 - 1.8}{5 + 2*(-1)} = \frac13*1.2 = \dfrac25
|
18,591 |
(X + 3)^2 = X^2 + 6 \times X + 9 = X \times X + 5 \times X + 7 + X + 2
|
-18,725 |
0.9912 = \left(-1\right)*0.0062 + 0.9974
|
-30,842 |
8 = 2(-1) + 10
|
9,084 |
\mathbb{E}(X_l\cdot X_j) = \mathbb{Cov}(X_l,X_j) + \mathbb{E}(X_l)\cdot \mathbb{E}(X_j) = \mathbb{Cov}(X_l,X_j)
|
8,973 |
x - \frac{1}{\sin{x} + 1}(x - \cos{x}) = x
|
6,846 |
1/2*\dfrac12 + 1/2*\frac12 = 1/2
|
-4,388 |
\frac{1}{y^3}y^2 = yy/(yy y) = 1/y
|
8,471 |
E - \frac13\cdot \left(A \cdot A - z^2\right)^{\frac12\cdot 3} = E - \sqrt{-z^2 + A \cdot A}\cdot (A^2 - z \cdot z)/3
|
34,867 |
\dfrac{1}{m^2} \cdot ((-1) + m)^2 = (1/m)^0 \cdot (((-1) + m)/m)^2
|
11,933 |
(2^m)^2 = 2^{2*m}
|
5,291 |
\frac{92\cdot 1/5}{100} = \frac{92}{500} = 23/125
|
32,235 |
a^2 + b^2 + a\cdot b\cdot 2 = (a + b)^2
|
31,549 |
8 + y \cdot y^2 + y^2 - 10\cdot y = ((-1) + y)\cdot (2\cdot (-1) + y)\cdot (4 + y)
|
41,170 |
a + 1 + \left(-1\right) = a
|
22,642 |
\left(5/3\right)^2 = \dfrac{1}{9}\cdot 25 \neq 3
|
-4,563 |
(3*\left(-1\right) + y)*(5*(-1) + y) = 15 + y^2 - 8*y
|
5,463 |
1/(g d) = 1/(d g)
|
19,028 |
60 = 8 \cdot 3 \cdot 5/2
|
34,355 |
\overline{\tau + x} = \overline{x} + \overline{\tau}
|
10,603 |
\dfrac{w}{w + 3\cdot (-1)} = \frac{w + 3\cdot (-1) + 3}{w + 3\cdot (-1)} = 1 + \frac{3}{w + 3\cdot (-1)}
|
20,807 |
(78804 + 33\cdot (-1))^{67} = 78771^{67}
|
31,324 |
0.8 = \frac{1}{12 + x}\cdot (7.8 + x)\Longrightarrow x = 9
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.