id
int64
-30,985
55.9k
text
stringlengths
5
437k
-20,044
\tfrac{l + 10}{10 + l\cdot 3}\cdot \frac{8}{8} = \frac{l\cdot 8 + 80}{24\cdot l + 80}
22,725
(2*m + 1) * (2*m + 1) = 4*m * m + 4*m + 1 = 4*(m^2 + m) + 1
4,052
\sin(\frac{\pi}{4} + y) = \cos(\frac{\pi}{4}) \cdot \sin\left(y\right) + \cos(y) \cdot \sin(\frac{\pi}{4})
7,328
\frac{1}{1 - y^2} = 1 + y^2 + y^4 + y^6*...
-22,295
q^2 - 6q + 5 = (q + 5(-1)) (q + (-1))
23,039
2\cdot \left(-1\right) + (1/z + z)^2 = \frac{1}{z^2} + z^2
2,221
(s + t + x)^2 = s^2 + t^2 + x^2 + 2\cdot s\cdot t + 2\cdot x\cdot s + x\cdot t\cdot 2
27,167
1 = 1.0 = ... = 1*...
3,002
-(5^{1 / 2} \cdot 2 - 11^{1 / 2}) + 5^{1 / 2} \cdot 2 + 11^{1 / 2} = 2 \cdot 11^{1 / 2}
35,002
-l^2 + i^2 = 0 \Rightarrow i^2 = l^2
14,915
\cos\left(2 \cdot y\right) = \cos^2(y) - \sin^2\left(y\right) = 1 - 2 \cdot \sin^2(y)
-30,887
\frac{1}{8}*48 = 6
-20,103
\frac{9}{3(-1) + x} \dfrac77 = \frac{63}{21 \left(-1\right) + 7x}
3,182
3 + 2\cdot (3\cdot n + (-1) + 2\cdot n^2 - n) = 4\cdot n \cdot n + 4\cdot n + 1 = (2\cdot n + 1)^2
4,966
1 - \dfrac{1}{y_{1 + j} + (-1)} = \frac{1}{(-1) + y_{1 + j}}\times (y_{1 + j} + 2\times (-1))
16,638
r*x*8 = x*r*8
23,490
d*y = g \implies y = g/d
25,812
2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 = 2016
3,570
3^{2\cdot (-1) + k}\cdot \left(9 + \left(-1\right)\right) = -3^{k + 2\cdot (-1)} + 3^k
25,970
z^{2 \times 2}\times z^{2^6}\times z^{2^8}\times z^{2^9}\times z^{2^{10}}\times z^{2^7}\times z^{2^4}\times z^{2^3} = z^{2012}
23,853
\binom{3}{2}\cdot 2^{3 + 2\cdot (-1)} = 3\cdot 2 = 6
200
(n + 1)^2 - n \times n = n \times 2 + 1
25,471
\dfrac{0.96}{0.01 + 0.96} = 96/97
-1,624
-5/4\cdot \pi = 0 - 5/4\cdot \pi
14,180
\alpha = \alpha^{p^d} \Rightarrow (\alpha^{p^{d + (-1)}})^p = \alpha
28,698
\frac{2*\pi}{3} = 2/3*\pi
31,853
9 = 6 \cdot (-1) + 3 \cdot 5
-20,422
\frac{1}{2 + x\cdot 5}\cdot \left(10\cdot x + 2\cdot (-1)\right)\cdot \frac77 = \dfrac{14\cdot (-1) + 70\cdot x}{14 + x\cdot 35}
12,487
4\tan^{-1}(∞) = \pi\cdot 2
5,204
(n + 1)^2 = 1 + 3 + ... + 2n + 1
7,381
z^2 + z = z \cdot z + 2\cdot z - z = z \cdot z - z + 2\cdot z = z^2 - z + 2\cdot z
45,540
(b/3 + \frac{2}{3} \cdot x)^0 \cdot (-x + b) \cdot \dfrac34 + b^0 \cdot (b - x)/4 = b - x
-23,811
(2 + 5)^2 = 7^2 = 7 \cdot 7 = 49
26,226
1 + 2 + \cdots + 9 = \frac12\cdot 90 = 45
37,303
1 + 1 + 5 + 5 = 12
18,669
(y + 3\cdot (-1))\cdot (y + 5) - (y + 4)\cdot (y + 5\cdot (-1)) = y^2 + 2\cdot y + 15\cdot \left(-1\right) - y^2 - y + 20\cdot (-1) = 3\cdot y + 5
-1,920
7/12 \cdot \pi + \pi \cdot 13/12 = 5/3 \cdot \pi
-20,032
\frac{50 \cdot (-1) + t \cdot 100}{70 \cdot t + 35 \cdot \left(-1\right)} = \frac{10}{7} \cdot \frac{1}{5 \cdot (-1) + 10 \cdot t} \cdot (10 \cdot t + 5 \cdot (-1))
1,707
x = \tan(G) \Rightarrow G = \operatorname{atan}\left(x\right)
11,017
B*X*2 = B*X + X*B
18,034
3^{1/2} = \cot{\frac{1}{6}\cdot \pi}
32,881
\frac{1}{0.25 + 1} = 1 - 0.2
31,508
2 + m + (-1) = m + 1
10,236
x\cdot e\cdot z = x\cdot z = x\cdot e\cdot z
-26,367
\left(-1\right)*(-1) = 1
586
4^2+28^2+46^2=4*27^2
-2,900
(3 \cdot (-1) + 5) \cdot 13^{1/2} = 13^{1/2} \cdot 2
11,154
\left(8 \cdot (-1) + 7\right)^2 + (8 + 10 \cdot (-1)) \cdot (8 + 10 \cdot (-1)) = 5
40,925
5 \times 20 = 100
-26,368
(-1)\cdot (-1)\cdot \left(-1\right) = -1
3,454
-\frac{1}{2^k} + 1 = 1/2 + 1/4 + \dotsm + \frac{1}{2^k}
7,818
f*d + f*h = f*\left(d + h\right)
-15,782
10/10 - 7\cdot \frac{1}{10}\cdot 9 = -\frac{53}{10}
507
eh + xh = \left(e + x\right) h
-1,614
23/12\cdot \pi - 19/12\cdot \pi = \frac{\pi}{3}
-27,513
x^2\cdot 21 = 3\cdot 7xx
14,492
e_2 + e_3 + \cdots + e_x + e_{x + 1} = e_2 + e_3 + \cdots + e_x + e_{x + 1}
-19,058
3/4 = A_Y/\left(49*\pi\right)*49*\pi = A_Y
33,520
10 \cdot \frac{1}{12345} \cdot 54321 = 5 \cdot 9 + (-1) + 5 \cdot 6/12345 \approx 44
-26,148
-4\cdot 25^{\frac123} - -4\cdot 0^{\frac123} = -500 + 0 = -500
19,016
\sin\left(z*2\right) = 2*\cos(z)*\sin(z)
-26,153
[4\cdot4-24\cdot4^{-1}]-[4\cdot3-24\cdot3^{-1}] = 10-4 = 6
29,804
\frac{z^2}{(-1) + z^2} = \frac{z^2}{2}*(\frac{1}{(-1) + z} - \dfrac{1}{1 + z})
8,998
\frac{1}{y + 2} = \tfrac{1/2}{1 + \dfrac{y}{2}}
-3,825
7/9*x * x = 7*x^2/9
31,137
1 - 125/216 = \frac{1}{216}\cdot 91
24,503
2 = (6 + 34^{1/2})\cdot (-34^{1/2} + 6)
32,786
(-1)*4.5 + 110 + 18*(-1) + 4*(-1) - 3.5 + 9*(-1) + 2*(-1) = 69
55,133
\sqrt{t^2 + d \cdot d} - t \approx \sqrt{t^2 + d \cdot d + \frac{1}{4 \cdot t^2} \cdot d^4} - t = \sqrt{(t^2 + \dfrac{d^2}{2 \cdot t})^2} - t = \frac{1}{2 \cdot t} \cdot d^2
399
1/n - \frac{1}{1 + n} = \frac{1}{n \cdot n + n}
26,615
e*c*b = c*e*b
-20,026
\frac{56 \times \left(-1\right) + 56 \times r}{48 \times (-1) + r \times 48} = \frac{8 \times \left(-1\right) + 8 \times r}{8 \times (-1) + 8 \times r} \times \dfrac{7}{6}
9,715
-2\times y^2 + 12 \geq 16 + y^2 - y\times 8 \implies 3\times y \times y - y\times 8 + 4 \leq 0
31,124
\frac{1}{2} \cdot \left(n + (-1)\right)! = \frac{n!}{n \cdot 2}
-22,091
\frac{20}{36} = \frac59
-2,536
125^{1 / 2} - 45^{1 / 2} + 80^{1 / 2} = (16 \cdot 5)^{\dfrac{1}{2}} + (25 \cdot 5)^{1 / 2} - \left(9 \cdot 5\right)^{\dfrac{1}{2}}
20,549
250^2*250^{y*3 + (-1)} = 250^{y*3 + 1}
47,308
\sum_{n=0}^\infty(-1)^n\frac{4^{n-2}(x-2)}{(n-2)!} = (x-2) \sum_{n=0}^\infty\frac{(-4)^{n-2}}{(n-2)!} = (x-2) \left(\sum_{n=0}^\infty\frac{(-4)^{n}}{n!} \right)
6,417
\sin(\alpha) \cdot \cos(\beta) + \sin(\beta) \cdot \cos(\alpha) = \sin\left(\beta + \alpha\right)
21,350
\sin(x \cdot 2) = \sin(x + x)
4,222
9 a^4 = x^2 \implies 900 a^4 = x^2\cdot 100
24,196
y^2 + (-1) = (y + 1)*\left(y + (-1)\right)
6,759
\frac{1}{z + B}z = 1 - \dfrac{B}{B + z}
33,312
\dfrac{76!}{76! - 75!} = \frac{76 \cdot 75!}{75! \cdot (76 + (-1))} \cdot 1 = \frac{1}{75} \cdot 76
1,768
[g,d] = \left[f, e\right] \Rightarrow f = e,g = d
23,349
\binom{24}{8} \binom{16}{8} = \frac{24!}{8!^3} = 9465511770
33,777
2*\frac{1}{3}*2*2 = 8/3
-18,388
\dfrac{p\cdot \left(3 + p\right)}{\left(3 + p\right)\cdot \left(3\cdot (-1) + p\right)} = \frac{1}{9\cdot (-1) + p^2}\cdot (p\cdot 3 + p^2)
7,376
1 - \tfrac{1}{m + 1} + \frac{1}{(m + 2)*(1 + m)} = 1 - \dfrac{1}{2 + m}
29,749
Y'\cdot Z + x\cdot Y' + X\cdot Z = X\cdot Y'\cdot Z + x\cdot Y'\cdot Z + x\cdot Y' + X\cdot Z = x\cdot Y' + X\cdot Z
20,120
v*(-\lambda) = -v\lambda
-3,396
2\cdot 3^{1 / 2} + 3^{1 / 2}\cdot 5 = 25^{1 / 2}\cdot 3^{1 / 2} + 4^{1 / 2}\cdot 3^{1 / 2}
-7,532
(6 - i \times 12)/3 = 6/3 - 12 \times i/3
2,587
|h\cdot g| = |h|\cdot |g| \leq |h|\cdot \|g\|_\infty
-28,797
24 = 2\pi/\left(\pi*2*\frac{1}{24}\right)
-9,399
24 \cdot q + 18 = q \cdot 2 \cdot 2 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 3
5,326
\frac{\partial}{\partial x} (v \cdot w) = v \cdot \frac{\mathrm{d}w}{\mathrm{d}x} + w \cdot \frac{\mathrm{d}v}{\mathrm{d}x}
-6,493
\dfrac{3}{z - 2} \times \dfrac{5(z + 5)}{5(z + 5)} = \dfrac{15(z + 5)}{5(z + 5)(z - 2)}
-22,794
\frac{1}{40}60 = 20*3/(2*20)
16,097
w \cdot v^U \cdot z = z \cdot v^U \cdot w