id
int64
-30,985
55.9k
text
stringlengths
5
437k
6,679
((1 + l) \cdot (1 + l) + l \cdot l + l^2 + l) \cdot (-(l + 1) + l) = -(3 \cdot l^2 + l \cdot 3 + 1)
12,122
\frac{1}{y^n} + \frac{1}{x^n} = \dfrac{1}{y^n x^n}(x^n + y^n)
14,874
\frac{\partial}{\partial z} (z^4*b^2) = b * b*z^3*4
23,547
\frac12 ((-1) + \sqrt{5}) = \cos(\frac{2 \pi}{5})\cdot 2
22,468
(-4) \cdot (-4) \cdot (-4) = (-1) \cdot (-1)^2\cdot 4^3 = -64
9,358
\max{n,y} = n \implies n \geq y
25,211
(fb)^2 = (bf)^2
17,183
\dfrac{(2\cdot l)!}{l!\cdot 2^l} = 3\cdot 5\cdot \dotsm\cdot (2\cdot l + (-1))
-1,600
-5/12*\pi + \pi*2 = \frac{1}{12}*19*\pi
-3,060
11^{\frac{1}{2}} + 4^{\dfrac{1}{2}}\cdot 11^{\frac{1}{2}} = 11^{1 / 2} + 11^{\frac{1}{2}}\cdot 2
32,569
9 = 1/2\times 3\times 6
12,212
p\cdot y/y = y\cdot p/y
3,087
(-4 + 4 \cdot \left(-1\right))/2 = -4
16,921
10 \cdot x = \frac{1}{-2} \cdot ((-20) \cdot x) = -0.5 \cdot (-20 \cdot x)
19,674
\left(a - b\right)^2 = a^2 - b*a*2 + b^2
28,408
17^5 + 17^5 + 34^5 = 2*4913 * 4913
-1,201
-21/24 = ((-21)\cdot \frac{1}{3})/(24\cdot \frac13) = -\dfrac{1}{8}\cdot 7
31,801
\frac12 = 1*2/\left(2*2\right) = \dfrac24
-29,651
\frac{\text{d}}{\text{d}x} (x*3 + x^3 - 4x^2) = 3x^2 - 8x + 3
42,063
\operatorname{atan}(\frac13) + \operatorname{atan}(1/7) + \dotsm + \operatorname{atan}(\frac{1}{1 + n^2 + n}) = \operatorname{atan}(\frac{1}{n + 2}n)
-4,547
15 \cdot (-1) + x^2 - x \cdot 2 = (x + 5 \cdot (-1)) \cdot (3 + x)
1,532
1 + \frac14 + 1/9 + \dotsm = \dfrac{\pi^2}{6}
34,846
{20 \choose 5} = \frac{20!}{5! \cdot (20 + 5 \cdot \left(-1\right))!} = 15504
30,062
4 = 8^{1 / 2}*2^{1 / 2}
4,990
(-i + l)! = (\left(-1\right) + l - i)! (l - i)
8,736
\dfrac{1}{x^2 + 2}\cdot (x \cdot x + 1) = 1 - \frac{1}{x^2 + 2}
-21,058
4/8 = \dfrac22\cdot 2/4
8,518
\frac{1}{2^{2x}}2^{4x - x^2 + (-1)} = 2^{4x - x^2 + \left(-1\right) - 2x} = 2^{2x - x^2 + \left(-1\right)} = 2^{-(x + (-1))^2}
29,863
\sin^{-1}(\sin{y}) = \sin^{-1}(\sin(\pi - y)) = \pi - y
-22,940
60/96 = 12*5/\left(8*12\right)
26,517
4 = \frac12\cdot ((-1)\cdot (-1) + 7)
16,994
e^{i \cdot y} \cdot e^z = e^{y \cdot i + z}
27,537
1/(f c) = \frac{1}{f c}
14,689
(-\frac{1}{2})^{\frac{1}{\frac12}} = (-1/2) \times (-1/2) = \dfrac{1}{4}
28,065
(U \cap x) \cap U_j = \left(U \cap U_j\right) \cap (x \cap U_j)
7,874
1 + 2 \cos{2 y_k} = 1 + 2*(1 - 2 \sin^2{y_k}) = \frac{1}{\sin{y_k}} \sin{3 y_k}
12,590
\sin^5{z} = \sin^4\left(z\cdot \sin{z}\right) = \left(1 - \cos^2{z}\right) \cdot \left(1 - \cos^2{z}\right)\cdot \sin{z}
-15,747
\frac{p}{\frac{1}{\frac{1}{p^{25}}\cdot n^{15}}} = \tfrac{p}{p^{25}\cdot \frac{1}{n^{15}}}
26,520
(y + z) \cdot (-y + z) \cdot (y \cdot y + z^2) = z^4 - y^4
30,662
0 = G E - G - E + 1 = (G + (-1)) \left(E + (-1)\right)
14,229
\left(C\cdot x - b\right)^W\cdot (C\cdot x - b) = \left(x^W\cdot C^W - b^W\right)\cdot (C\cdot x - b) = x^W\cdot C^W\cdot C\cdot x - x^W\cdot C^W\cdot b - b^W\cdot C\cdot x + b^W\cdot b
15,605
(-1) + 2\cdot m = 2\cdot (1 + m) + 3\cdot \left(-1\right)
-2,434
\sqrt{2}*(2 + 5 + 3*(-1)) = \sqrt{2}*4
13,858
12 = \left(1 + 1\right)*(1 + 2)*(1 + 1)
22,763
4 = \rho^2 - y^2 = (\rho - y)\cdot \left(\rho + y\right)
-7,014
\frac{1}{21} = 1/7 \cdot 2/6
11,027
\sin(d + g) = \sin\left(d\right)\cdot \cos(g) + \sin(g)\cdot \cos(d)
-26,536
(4 - x)\times \left(x + 4\right) = -x^2 + 4^2
27,146
\operatorname{im}{(x)} = \sin{\pi\cdot l/k} \Rightarrow x = e^{\frac{l}{k}\cdot \pi\cdot i}
23,395
42 = \frac{1}{5!*1!*1!}*7!
1,121
t^3 - 10\cdot t^2 + t\cdot 33 + 36\cdot \left(-1\right) = (t + 4\cdot (-1))\cdot \left(3\cdot (-1) + t\right)^2
17,744
y_1*g_1 = z_2*g_2 \Rightarrow z_2 = \dfrac{g_1*y_1}{g_2}*1
14,328
f^z = e^{\ln(f^z)} = e^{z\ln(f)}
18,123
z^4 + 4 = (2 + z * z - 2*z)*(2 + z^2 + 2*z)
42,326
649\cdot 9 + 6 = 5847
22,884
\left(C_2 + C_1\right)^3 = C_1^3 + 3*C_2*C_1^2 + 3*C_1*C_2^2 + C_2^3
2,606
1/36 + (1 - 1/36) \frac{216}{1111} = \frac{8671}{39996} \approx 0.2168
-28,920
5*\dfrac19/9 = \dfrac{5}{9*9} = 5/81
13,498
1 = y/y \Rightarrow 1/y = \dfrac{1}{y}
-22,837
60/72 = \frac{12}{12\cdot 6}\cdot 5
24,941
\sin(19\pi/12)=-(1+\sqrt{3})/2\sqrt{2}
7,503
\frac{\frac1d}{h} \cdot a = a \cdot \frac{1}{d}/h = \frac{a}{d \cdot h}
-20,135
\frac{45\cdot k}{k\cdot 81} = 5/9\cdot \frac{9\cdot k}{9\cdot k}\cdot 1
42,882
\dfrac{1}{1 + \frac{1}{a + \left(-1\right)}} = 1 - 1/a
-9,312
x^2*27 = x*3*3*3 x
883
2^{n + (-1)}\cdot 2 + 1 = 3\cdot 2^{n + (-1)} - 2^{(-1) + n} + 3 + 2\cdot (-1)
-10,446
10 = -32 - 80 \cdot t + 20 = -80 \cdot t + 12 \cdot (-1)
-4,715
\frac{15 + 7\cdot y}{y^2 + y\cdot 6 + 5} = \frac{1}{1 + y}\cdot 2 + \frac{5}{y + 5}
22,930
\tan{x}\cdot \sin{x} + \cos{x} = 0 \Rightarrow \dfrac{1}{\cos{x}}\cdot (\sin^2{x} + \cos^2{x}) = 0
3,878
-b^2 + h^2 = (h + b) \cdot (h - b)
21,272
b^2 + a^2 + ba*2 = (a + b) * (a + b)
-6,554
\dfrac{4 \cdot x}{x^2 + 7 \cdot x + 6} = \frac{4 \cdot x}{(1 + x) \cdot (6 + x)}
11,267
2\cdot \sqrt{x\cdot y} \lt x^2 + 2\cdot x\cdot y + y^2 - x - y = (x + y) \cdot (x + y) - x + y = (x + y)\cdot (x + y + (-1))
-5,886
\frac{1}{x^2 - 17*x + 72}*3 = \tfrac{1}{(8*(-1) + x)*(9*(-1) + x)}*3
16,351
\dfrac{1}{h_1}a + h_2/\left(h_1\right) = \frac{1}{h_1}(h_2 + a)
19,454
(0 \cdot (-1) + y)^x = y^x
-7,543
\frac{1}{-1 + i\cdot 5}\cdot (-1 + i\cdot 5)\cdot \frac{1}{-i\cdot 5 - 1}\cdot (9\cdot i + 7) = \dfrac{7 + 9\cdot i}{-1 - i\cdot 5}
-14,214
\frac{4}{6 + 5 (-1)} = \tfrac41 = \dfrac41 = 4
39,579
\frac{3}{4} = \frac12 + 1/4
-22,868
\dfrac{110}{66} = \dfrac{5 \cdot 22}{ 3\cdot 22}
37,793
393 = 38 \times \left(-1\right) + 431
1,501
1 + d + d^2 + d * d * d + \dotsm + d^m = \frac{1 - d^{1 + m}}{1 - d}
9,844
\left\{v\right\} = ( v + x, x + v) \implies \left[x,v\right] = 0
8,833
\left(-1\right) + \cos^2{u}*2 = \cos{u*2}
-11,763
\frac{1}{49}100 = (10/7)^2
3,343
n = -(n^2 - n) + n n
-13,356
\dfrac{7}{6 + 5 \times \left(-1\right)} = 7/1 = \dfrac71 = 7
-12,239
41/45 = \frac{t}{10\cdot \pi}\cdot 10\cdot \pi = t
26,409
\frac{6}{7} = \dfrac{1}{3 - 1 + 1/2 + 1/3}
19,926
h^U = h^{-\left\lfloor{U}\right\rfloor + U} h^{\left\lfloor{U}\right\rfloor}
-23,088
-\frac{1}{27}\cdot 128 = -\frac{32}{9}\cdot \frac43
-23,021
24/84 = \frac{12 \cdot 2}{12 \cdot 7}
10,007
((T_{d + 2\times (-1)} + 0.25)\times 1.01 + 0.25)\times 1.01 = \left(1.01\times T_{d + 2\times (-1)} + 0.25\times 1.01 + 0.25\right)\times 1.01
10,472
\frac{1}{4} = 3/8\cdot 2/3
-22,003
\dfrac{4}{8} + \dfrac{8}{5} = {\dfrac{4 \times 5}{8 \times 5}} + {\dfrac{8 \times 8}{5 \times 8}} = {\dfrac{20}{40}} + {\dfrac{64}{40}} = \dfrac{{20} + {64}}{40} = \dfrac{84}{40}
12,848
\left(b b - 4 c\right)^{1 / 2} = i \cdot (4 c - b^2)^{1 / 2} = i \|b^2 - 4 c\|^{\dfrac{1}{2}}
18,901
3 - 3*(-1) + 5 = 1
1,032
\dfrac{4}{3}\cdot (3/2)^2 = 3
-3,248
7*6^{1/2} = (4 + 3)*6^{1/2}
26,996
9^1 = 9^{\frac12} \cdot 9^{1/2}