id
int64
-30,985
55.9k
text
stringlengths
5
437k
14,862
x + \frac{1}{x} = (x^2 + 1)/x
3,419
(1 - x)^{l + 2\times (-1)} = \frac{1}{-(-x + 1) + 1}\times (-x + 1)^{2\times (-1) + l}\times x
20,752
\overline{h}\cdot \overline{b} = \overline{b\cdot h}
3,412
n\cdot 2/4 = \frac12\cdot n
24,897
x\cdot d\cdot a = x\cdot d\cdot a
35,481
\frac{1}{4} \cdot 11 = 2.75
3,492
\left(Q*z*x - Q^3\right)*(Q^2 + z*x) + x^5 + Q^5 = Q*z^2*x^2 + x^5
-26,509
10^2 + (9 x) (9 x) + x*9*10*2 = \left(9 x + 10\right)^2
29,350
\left(x - a\right) * \left(x - a\right) = \left(-a + x\right)*(x - a)
-1,646
\pi\cdot \frac{1}{12}\cdot 13 = 0 + \pi\cdot \frac{1}{12}\cdot 13
-10,679
5/5\cdot 3/(15\cdot t) = 15/(t\cdot 75)
17,461
(2^{24} + \left(-1\right))/4096 = 2^{12} - 1/4096
-4,914
36.5/100 = \frac{36.5}{100}
-22,290
21 + x^2 - 10\cdot x = \left(3\cdot (-1) + x\right)\cdot \left(x + 7\cdot (-1)\right)
10,956
z/y = 1/(y\cdot \dfrac1z)
-5,488
\frac{s \cdot 2}{4 + s^2 - 5 \cdot s} = \frac{2}{(s + (-1)) \cdot (s + 4 \cdot (-1))} \cdot s
13,153
\frac{5!}{2!*3!} + \left(-1\right) = 9
5,562
1/4323 \cdot 4322/4322 = \frac{1}{4323}
13,086
\frac{1}{2} = 3 \cdot (-1) + \frac{7}{2}
21,808
\pi \frac{5}{12} = \pi/6 + \pi/4
44,977
5!\cdot 7 = 840
21,047
-\frac58 + 1 = \tfrac{3}{8}
31,477
(5 + 3\times n^2 + n\times 6)\times 4 = (2\times n + 4)^2 + (n\times 2)^2 + (2 + 2\times n)^2
6,572
(-x + \alpha)^2 = -x\alpha\cdot 2 + \alpha^2 + x^2
12,295
e = e/3 + \tfrac{1}{3}e + e/3
-12,595
45 = 55 (-1) + 100
24,498
\dfrac{1}{y'} y'' + y'' z = y''/y' + y'' z + y' - y'
-15,619
\frac{k^5}{k^2*z} = \dfrac{1}{\tfrac{1}{k^5}*z*k^2}
-6,100
\frac{3q}{(8 + q) \left(10 + q\right)} = \frac{1}{80 + q * q + q*18}q*3
21,605
|\left(a + b\times i\right)^2| = \sqrt{a^4 + b^4 - 2\times a^2\times b^2 + 4\times a^2\times b^2} = a \times a + b \times b = (a + b\times i)\times (a - b\times i) = a^2 + b^2
-17,703
53*\left(-1\right) + 61 = 8
-429
\frac56*\pi = \pi*77/6 - 12*\pi
21,556
\frac{1}{4} \cdot \left(n + 1\right) = (n + (-1))/4 + 1/2
10,527
a\cdot h\cdot 4 = (a + h)^2 - \left(-h + a\right)^2
-11,712
(\frac35)^3 = \frac{27}{125}
-3,065
\sqrt{7}\times 5 + 4\times \sqrt{7} = \sqrt{16}\times \sqrt{7} + \sqrt{25}\times \sqrt{7}
22,533
\tfrac14 \cdot (\sqrt{5} + (-1)) = \sin{\pi/10}
6,864
E\left[X\right] + E\left[R\right] = E\left[X + R\right]
-2,702
10^{\frac{1}{2}}*6 = 10^{1 / 2}*(5 + 2 + (-1))
22,848
m^2 + \left(-1\right) = \left(m + 1\right)\cdot ((-1) + m)
22,330
|B_l| = |B_l - y + y| \leq |B_l - y| + |y|
4,005
\sin\left(3 \cdot \pi/9\right) = \sin(\tfrac{\pi}{3})
27,974
\sqrt{2 - 2 \cdot \cos{\theta}} = 2 \cdot \sin{\theta/2} = 2 \cdot \cos{(\pi - \theta)/2}
9,190
\dfrac{1/(5*5)*5}{4}*1 = \frac{1}{20}
21,895
2\cdot c + 1 = c\cdot 4 \Rightarrow c = \tfrac{1}{2}
1,456
0.5*m*0.6 = m*0.3
37,417
-2(z + 2(-1)) (2 + z) = -z * z*2 + 8
7,702
(x-(y+3))(x-(y-3))=(x-y-3)(x-y+3)
3,478
(z + 3) (2(-1) + z) = z^2 + z + 6(-1)
13,181
\frac{1}{y}\cdot y^{1/2} = y^{\frac12 + (-1)} = y^{-\frac12} = \frac{1}{y^{1/2}}
22,319
a_n + d_n + c_n = a_n + d_n + c_n
34,214
(2\cdot m + 2)! = \left(2\cdot m + 2\right)\cdot (2\cdot m + 1)! = \left(2\cdot m + 2\right)\cdot (2\cdot m + 1)\cdot (2\cdot m)!
16,969
1/(l_1\cdot b_1) = \frac{1}{b_1\cdot l_1} = \frac{1/(b_1)\cdot \dfrac{b_1}{l_1}}{b_1}
9,851
(-1) + i \cdot i = (i + (-1)) \cdot \left(1 + i\right)
10,256
\pi = \arctan\left(\sqrt{3}/3\right) \cdot 6
4,205
10 + \sqrt{3}\cdot 6 = (1 + \sqrt{3})^3
-21,042
2/10*\frac{10}{10} = 20/100
13,867
(-1) + y^2 = \left(1 + y\right) (\left(-1\right) + y)
-8,101
21 = \frac{42}{2}1
34,771
(-1)*\left(-1\right) = 1 > 0
8,237
d^{m/n} = (d^m)^{1/n} = (d^{\frac{1}{n}})^m
29,249
2^n - 2^{2\cdot (-1) + n}\cdot (\left(-1\right) + n) + \tfrac{1}{2!}\cdot (n + 3\cdot (-1))\cdot (2\cdot (-1) + n)\cdot 2^{n + 4\cdot \left(-1\right)} - \dots = 1 + n
29,450
\cos\left(A\right) \cdot \cos(B) + \sin(A) \cdot \sin(B) = \cos\left(-B + A\right)
35,975
2\cdot 2\cdot 2 \cdot 3= 24
3,600
\left(x + z\right)^3 \geq x * x^2 + z^3 = 2 \Rightarrow 2^{1/3} \leq z + x
-20,350
\frac{1}{-9 \cdot k + 9 \cdot (-1)} \cdot \left(-3 \cdot k + 3 \cdot (-1)\right) = \frac13 \cdot 1
23,895
\left(95 - t\right)^2 = t^2 + 9025 - t*190
-29,594
\frac{d}{dz} (3\cdot z^4) = 3\cdot d/dz z^4 = 3\cdot 4\cdot z^3 = 12\cdot z^3
11,389
(-z)^k = (-1)^k \cdot z^k = z^k
21,681
E\left[\frac{Z_1^2}{Z_1^2 + Z_2^2}\right] = \tfrac{1}{E\left[Z_1^2\right] + E\left[Z_2^2\right]} \cdot E\left[Z_1^2\right]
9,124
\dfrac{a}{y + a} = \tfrac{1}{1 + y/a}
24,795
7^2+6^2=9^2+2^2
18,050
1 + 2\cdot \left(-1\right) + 3\cdot (-1) = -4
10,756
-\frac{l}{d} \cdot d/x + l/d = \frac{l}{d} - \frac{l}{x}
-12,874
25 + 8*(-1) = 17
-17,123
-5 = -5 (-4 y) - 40 = 20 y - 40 = 20 y + 40 \left(-1\right)
10,489
|a_x + 0\cdot (-1)| = |a_x|
30
C/100*5 = \frac{C}{20}
-4,474
(3 + A) \cdot \left(1 + A\right) = A^2 + A \cdot 4 + 3
-93
3 \cdot \left(-1\right) - 12 = -15
-20,670
\dfrac{x - 10}{x - 6} \times \dfrac{10}{10} = \dfrac{10x - 100}{10x - 60}
8,543
100\cdot x = x + a\cdot 10 + h \implies \left(h + a\cdot 10\right)/99 = x
30,628
\frac{1}{x_2 \cdot x_1} = \tfrac{1}{x_2 \cdot x_1}
30,988
\frac{5^{25} + (-1) + 100\cdot \left(-1\right)}{5 + (-1)} = \tfrac{1}{4}\cdot (5^{25} + 101\cdot (-1))
-1,538
8/9 = \dfrac89
-17,918
33 + 23 \cdot (-1) = 10
26,807
2 \times 30^{\frac{1}{2}} = 4^{\dfrac{1}{2}} \times 30^{1 / 2} = 120^{1 / 2}
-9,313
40 \cdot i + 8 \cdot (-1) = i \cdot 2 \cdot 2 \cdot 2 \cdot 5 - 2 \cdot 2 \cdot 2
-22,759
\frac{49}{35} = 7\cdot 7/(5\cdot 7)
-25,532
\frac{\mathrm{d}}{\mathrm{d}s} (3*s * s + s) = 2*3*s + 1 = 6*s + 1
-2,690
\sqrt{7} + \sqrt{7} \cdot 5 = \sqrt{7} + \sqrt{7} \cdot \sqrt{25}
-1,426
\frac{(-1)*\frac{1}{5}}{1/4*7} = -\frac15*4/7
18,459
|c^2 + z * z + z*c|*|z - c| = |-c^3 + z^3|
3,038
(-x)^3 = -x*\left(-x\right)^2 = -x*x * x = -x * x^2
11,277
\binom{\left(-1\right) + n}{(-1) + k} + \binom{n + (-1)}{k} = \binom{n}{k}
11,894
-y \cdot y - 40 + 14\cdot y = -(10\cdot (-1) + y)\cdot (4\cdot \left(-1\right) + y)
12,281
\frac{1}{(x \cdot x + 1)^{1 / 2}} = \cos(\operatorname{atan}(x))
-3,687
\dfrac{45 \cdot r}{r^2 \cdot 99} = \frac{r}{r^2} \cdot \frac{45}{99}
845
2(-1) + y^3 - y \cdot 3 = (y + 1)^2 (2(-1) + y)
25,930
4 = x^2 + \left(-x + 2\right) \cdot \left(-x + 2\right) + z^2\Longrightarrow 1 = \left(x + (-1)\right)^2 + z \cdot z/2