id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
14,862 | x + \frac{1}{x} = (x^2 + 1)/x |
3,419 | (1 - x)^{l + 2\times (-1)} = \frac{1}{-(-x + 1) + 1}\times (-x + 1)^{2\times (-1) + l}\times x |
20,752 | \overline{h}\cdot \overline{b} = \overline{b\cdot h} |
3,412 | n\cdot 2/4 = \frac12\cdot n |
24,897 | x\cdot d\cdot a = x\cdot d\cdot a |
35,481 | \frac{1}{4} \cdot 11 = 2.75 |
3,492 | \left(Q*z*x - Q^3\right)*(Q^2 + z*x) + x^5 + Q^5 = Q*z^2*x^2 + x^5 |
-26,509 | 10^2 + (9 x) (9 x) + x*9*10*2 = \left(9 x + 10\right)^2 |
29,350 | \left(x - a\right) * \left(x - a\right) = \left(-a + x\right)*(x - a) |
-1,646 | \pi\cdot \frac{1}{12}\cdot 13 = 0 + \pi\cdot \frac{1}{12}\cdot 13 |
-10,679 | 5/5\cdot 3/(15\cdot t) = 15/(t\cdot 75) |
17,461 | (2^{24} + \left(-1\right))/4096 = 2^{12} - 1/4096 |
-4,914 | 36.5/100 = \frac{36.5}{100} |
-22,290 | 21 + x^2 - 10\cdot x = \left(3\cdot (-1) + x\right)\cdot \left(x + 7\cdot (-1)\right) |
10,956 | z/y = 1/(y\cdot \dfrac1z) |
-5,488 | \frac{s \cdot 2}{4 + s^2 - 5 \cdot s} = \frac{2}{(s + (-1)) \cdot (s + 4 \cdot (-1))} \cdot s |
13,153 | \frac{5!}{2!*3!} + \left(-1\right) = 9 |
5,562 | 1/4323 \cdot 4322/4322 = \frac{1}{4323} |
13,086 | \frac{1}{2} = 3 \cdot (-1) + \frac{7}{2} |
21,808 | \pi \frac{5}{12} = \pi/6 + \pi/4 |
44,977 | 5!\cdot 7 = 840 |
21,047 | -\frac58 + 1 = \tfrac{3}{8} |
31,477 | (5 + 3\times n^2 + n\times 6)\times 4 = (2\times n + 4)^2 + (n\times 2)^2 + (2 + 2\times n)^2 |
6,572 | (-x + \alpha)^2 = -x\alpha\cdot 2 + \alpha^2 + x^2 |
12,295 | e = e/3 + \tfrac{1}{3}e + e/3 |
-12,595 | 45 = 55 (-1) + 100 |
24,498 | \dfrac{1}{y'} y'' + y'' z = y''/y' + y'' z + y' - y' |
-15,619 | \frac{k^5}{k^2*z} = \dfrac{1}{\tfrac{1}{k^5}*z*k^2} |
-6,100 | \frac{3q}{(8 + q) \left(10 + q\right)} = \frac{1}{80 + q * q + q*18}q*3 |
21,605 | |\left(a + b\times i\right)^2| = \sqrt{a^4 + b^4 - 2\times a^2\times b^2 + 4\times a^2\times b^2} = a \times a + b \times b = (a + b\times i)\times (a - b\times i) = a^2 + b^2 |
-17,703 | 53*\left(-1\right) + 61 = 8 |
-429 | \frac56*\pi = \pi*77/6 - 12*\pi |
21,556 | \frac{1}{4} \cdot \left(n + 1\right) = (n + (-1))/4 + 1/2 |
10,527 | a\cdot h\cdot 4 = (a + h)^2 - \left(-h + a\right)^2 |
-11,712 | (\frac35)^3 = \frac{27}{125} |
-3,065 | \sqrt{7}\times 5 + 4\times \sqrt{7} = \sqrt{16}\times \sqrt{7} + \sqrt{25}\times \sqrt{7} |
22,533 | \tfrac14 \cdot (\sqrt{5} + (-1)) = \sin{\pi/10} |
6,864 | E\left[X\right] + E\left[R\right] = E\left[X + R\right] |
-2,702 | 10^{\frac{1}{2}}*6 = 10^{1 / 2}*(5 + 2 + (-1)) |
22,848 | m^2 + \left(-1\right) = \left(m + 1\right)\cdot ((-1) + m) |
22,330 | |B_l| = |B_l - y + y| \leq |B_l - y| + |y| |
4,005 | \sin\left(3 \cdot \pi/9\right) = \sin(\tfrac{\pi}{3}) |
27,974 | \sqrt{2 - 2 \cdot \cos{\theta}} = 2 \cdot \sin{\theta/2} = 2 \cdot \cos{(\pi - \theta)/2} |
9,190 | \dfrac{1/(5*5)*5}{4}*1 = \frac{1}{20} |
21,895 | 2\cdot c + 1 = c\cdot 4 \Rightarrow c = \tfrac{1}{2} |
1,456 | 0.5*m*0.6 = m*0.3 |
37,417 | -2(z + 2(-1)) (2 + z) = -z * z*2 + 8 |
7,702 | (x-(y+3))(x-(y-3))=(x-y-3)(x-y+3) |
3,478 | (z + 3) (2(-1) + z) = z^2 + z + 6(-1) |
13,181 | \frac{1}{y}\cdot y^{1/2} = y^{\frac12 + (-1)} = y^{-\frac12} = \frac{1}{y^{1/2}} |
22,319 | a_n + d_n + c_n = a_n + d_n + c_n |
34,214 | (2\cdot m + 2)! = \left(2\cdot m + 2\right)\cdot (2\cdot m + 1)! = \left(2\cdot m + 2\right)\cdot (2\cdot m + 1)\cdot (2\cdot m)! |
16,969 | 1/(l_1\cdot b_1) = \frac{1}{b_1\cdot l_1} = \frac{1/(b_1)\cdot \dfrac{b_1}{l_1}}{b_1} |
9,851 | (-1) + i \cdot i = (i + (-1)) \cdot \left(1 + i\right) |
10,256 | \pi = \arctan\left(\sqrt{3}/3\right) \cdot 6 |
4,205 | 10 + \sqrt{3}\cdot 6 = (1 + \sqrt{3})^3 |
-21,042 | 2/10*\frac{10}{10} = 20/100 |
13,867 | (-1) + y^2 = \left(1 + y\right) (\left(-1\right) + y) |
-8,101 | 21 = \frac{42}{2}1 |
34,771 | (-1)*\left(-1\right) = 1 > 0 |
8,237 | d^{m/n} = (d^m)^{1/n} = (d^{\frac{1}{n}})^m |
29,249 | 2^n - 2^{2\cdot (-1) + n}\cdot (\left(-1\right) + n) + \tfrac{1}{2!}\cdot (n + 3\cdot (-1))\cdot (2\cdot (-1) + n)\cdot 2^{n + 4\cdot \left(-1\right)} - \dots = 1 + n |
29,450 | \cos\left(A\right) \cdot \cos(B) + \sin(A) \cdot \sin(B) = \cos\left(-B + A\right) |
35,975 | 2\cdot 2\cdot 2 \cdot 3= 24 |
3,600 | \left(x + z\right)^3 \geq x * x^2 + z^3 = 2 \Rightarrow 2^{1/3} \leq z + x |
-20,350 | \frac{1}{-9 \cdot k + 9 \cdot (-1)} \cdot \left(-3 \cdot k + 3 \cdot (-1)\right) = \frac13 \cdot 1 |
23,895 | \left(95 - t\right)^2 = t^2 + 9025 - t*190 |
-29,594 | \frac{d}{dz} (3\cdot z^4) = 3\cdot d/dz z^4 = 3\cdot 4\cdot z^3 = 12\cdot z^3 |
11,389 | (-z)^k = (-1)^k \cdot z^k = z^k |
21,681 | E\left[\frac{Z_1^2}{Z_1^2 + Z_2^2}\right] = \tfrac{1}{E\left[Z_1^2\right] + E\left[Z_2^2\right]} \cdot E\left[Z_1^2\right] |
9,124 | \dfrac{a}{y + a} = \tfrac{1}{1 + y/a} |
24,795 | 7^2+6^2=9^2+2^2 |
18,050 | 1 + 2\cdot \left(-1\right) + 3\cdot (-1) = -4 |
10,756 | -\frac{l}{d} \cdot d/x + l/d = \frac{l}{d} - \frac{l}{x} |
-12,874 | 25 + 8*(-1) = 17 |
-17,123 | -5 = -5 (-4 y) - 40 = 20 y - 40 = 20 y + 40 \left(-1\right) |
10,489 | |a_x + 0\cdot (-1)| = |a_x| |
30 | C/100*5 = \frac{C}{20} |
-4,474 | (3 + A) \cdot \left(1 + A\right) = A^2 + A \cdot 4 + 3 |
-93 | 3 \cdot \left(-1\right) - 12 = -15 |
-20,670 | \dfrac{x - 10}{x - 6} \times \dfrac{10}{10} = \dfrac{10x - 100}{10x - 60} |
8,543 | 100\cdot x = x + a\cdot 10 + h \implies \left(h + a\cdot 10\right)/99 = x |
30,628 | \frac{1}{x_2 \cdot x_1} = \tfrac{1}{x_2 \cdot x_1} |
30,988 | \frac{5^{25} + (-1) + 100\cdot \left(-1\right)}{5 + (-1)} = \tfrac{1}{4}\cdot (5^{25} + 101\cdot (-1)) |
-1,538 | 8/9 = \dfrac89 |
-17,918 | 33 + 23 \cdot (-1) = 10 |
26,807 | 2 \times 30^{\frac{1}{2}} = 4^{\dfrac{1}{2}} \times 30^{1 / 2} = 120^{1 / 2} |
-9,313 | 40 \cdot i + 8 \cdot (-1) = i \cdot 2 \cdot 2 \cdot 2 \cdot 5 - 2 \cdot 2 \cdot 2 |
-22,759 | \frac{49}{35} = 7\cdot 7/(5\cdot 7) |
-25,532 | \frac{\mathrm{d}}{\mathrm{d}s} (3*s * s + s) = 2*3*s + 1 = 6*s + 1 |
-2,690 | \sqrt{7} + \sqrt{7} \cdot 5 = \sqrt{7} + \sqrt{7} \cdot \sqrt{25} |
-1,426 | \frac{(-1)*\frac{1}{5}}{1/4*7} = -\frac15*4/7 |
18,459 | |c^2 + z * z + z*c|*|z - c| = |-c^3 + z^3| |
3,038 | (-x)^3 = -x*\left(-x\right)^2 = -x*x * x = -x * x^2 |
11,277 | \binom{\left(-1\right) + n}{(-1) + k} + \binom{n + (-1)}{k} = \binom{n}{k} |
11,894 | -y \cdot y - 40 + 14\cdot y = -(10\cdot (-1) + y)\cdot (4\cdot \left(-1\right) + y) |
12,281 | \frac{1}{(x \cdot x + 1)^{1 / 2}} = \cos(\operatorname{atan}(x)) |
-3,687 | \dfrac{45 \cdot r}{r^2 \cdot 99} = \frac{r}{r^2} \cdot \frac{45}{99} |
845 | 2(-1) + y^3 - y \cdot 3 = (y + 1)^2 (2(-1) + y) |
25,930 | 4 = x^2 + \left(-x + 2\right) \cdot \left(-x + 2\right) + z^2\Longrightarrow 1 = \left(x + (-1)\right)^2 + z \cdot z/2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.