id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-1,466 | -\frac{18}{28} = \dfrac{(-18)\cdot 1/2}{28\cdot \tfrac{1}{2}} = -\frac{9}{14} |
15,054 | 2 \cdot \left(-1\right) + z^2 = (z - \sqrt{2}) \cdot (\sqrt{2} + z) |
1,799 | (\dfrac{4}{\pi^2})^{1/2} = \dfrac{1}{\pi}*2 |
3,460 | 126 + 5 \cdot \left(-1\right) + 15 \cdot (-1) + 0 = 106 |
15,630 | \tfrac12 + 7/(n*2) = \frac{1}{2*n}*(7 + n) |
-21,647 | -\frac19 = -\frac19 |
17,087 | 11 - 5*2 = 1 |
21,970 | x + 2\cdot x^2 + x^3\cdot 3 + \cdots = \frac{x}{(1 - x)^2} |
26,589 | 13 \frac{1}{2}(2(-1) + 13 + 1) = 78 |
-22,989 | \frac{18}{63} = \frac{9*2}{7*9} |
5,400 | x = (\left(x + 7 \cdot (-1)\right)^2 + 11 \cdot \left(-1\right)) \cdot (\left(x + 7 \cdot (-1)\right)^2 + 11 \cdot \left(-1\right)) = (x^2 - 14 \cdot x + 38)^2 |
-22,365 | q^2 - 14*q + 40 = (q + 4*(-1))*(q + 10*(-1)) |
10,525 | -\frac{\pi}{6} + \pi \cdot 2 = \tfrac{\pi}{6} \cdot 11 |
9,805 | (1 - z/l + (z/l) \cdot (z/l) + \cdots)/l = \frac{1}{l + z} |
32,406 | A^n\times A^0 = A^{n + 0} |
272 | 151200 = 9! - 3*8!*2! + 3*7!*2! |
9,680 | \frac{1}{17 * 17}*48^2*(34^2 - y^2) = \left(95 - y\right)^2 = 95^2 - 190*y + y^2 |
8,208 | \cos(\arcsin\left(p\right)) = \sqrt{\cos^2(\arcsin(p))} = \sqrt{1 - \sin^2\left(\arcsin(p)\right)} = \sqrt{1 - p^2} |
12,091 | \frac{\pi}{2}*45 + \pi/4*10 = \pi*25 |
711 | \sqrt{\frac{1}{1 - p}\cdot (1 + p)} = \tfrac{1}{\sqrt{1 - p^2}}\cdot (1 + p) = (1 + p)\cdot \mathbb{E}[p] |
-11,069 | \frac12*86 = 43 |
-10,401 | \frac{6}{\eta \cdot \eta\cdot 40} = \frac22\cdot \dfrac{3}{\eta^2\cdot 20} |
41,774 | 0.027 = (\frac{1}{10}3)^3 |
26,036 | -\pi \cdot p \cdot p + 4 \cdot \pi \cdot p \cdot p = \pi \cdot p^2 \cdot 3 |
14,550 | a = \lim_{n \to \infty} \sin{n}\Longrightarrow a \in (-1,1) = \lim_{n \to \infty} \sin{n*2} |
9,627 | 3 + g = 3 rightarrow g = 0 |
21,214 | \dfrac12 \cdot (\cos(-B + A) - \cos(A + B)) = \sin{A} \cdot \sin{B} |
-18,272 | \frac{y \cdot y + y \cdot 6}{y^2 - y + 42 \cdot (-1)} = \frac{1}{(6 + y) \cdot \left(7 \cdot (-1) + y\right)} \cdot y \cdot \left(y + 6\right) |
-11,539 | 12 + 3 \cdot \left(-1\right) + i \cdot 15 = 9 + 15 \cdot i |
554 | y*x - z*x + y*z = \left(y - z\right)*(-y + x) + y^2 |
29,281 | (1 + 1)^{1/2} = 2^{1 / 2} |
25,805 | (z \cdot z + 1)^2 - (\sqrt{2} \cdot z)^2 = 1 + z^4 |
13,737 | 9*x^2 + 36*(-1) = 3*x^2 - 6^2 = (3*x + 6)*(3*x + 6*(-1)) = 3*(x + 2)*\left(3*x + 6*(-1)\right) = 9*(x + 2)*\left(x + 2*(-1)\right) |
-14,583 | (2 + 3 \times 5) - 2 \times 8 = (2 + 15) - 2 \times 8 = 17 - 2 \times 8 = 17 - 16 = 1 |
-3,952 | \frac{1}{4}8 \frac{x^2}{x^2} = \dfrac{x^2 \cdot 8}{x^2 \cdot 4} |
-4,492 | ((-1) + X) \cdot \left(3 \cdot (-1) + X\right) = X \cdot X - 4 \cdot X + 3 |
-30,368 | \int ((-1) + 2 \cdot y) \cdot (2 \cdot y + 1)\,\mathrm{d}y = \int (4 \cdot y^2 + \left(-1\right))\,\mathrm{d}y |
8,067 | p^3 + (q + x)^3 + 4 p q x - 3 q x \cdot (x + q) = 4 p x q + p p p + q^3 + x^3 |
40,497 | ((9!)!)! \lt (9^{8\cdot 9^8})^{9^{8\cdot 9^8}} \lt (9^{9^9})^{9^{8\cdot 9^8}} = 9^{9^{8\cdot 9^8}\cdot 9^9} = 9^{9^{8\cdot 9^8 + 9}} |
-11,700 | \frac{125}{64} = (\dfrac54)^3 |
12,988 | 2^4 \cdot 3 - 2 \cdot 2^2 \cdot 3 + 2^2 = 28 |
33,799 | 101 = \frac{1}{50}*5050 |
-13,244 | \dfrac{1}{4 + 2\cdot (-1)}\cdot 6 = \frac{6}{2} = \frac62 = 3 |
38,060 | x^2 \cdot z^2 = (x \cdot z)^2 |
-1,171 | \dfrac53\cdot 6/7 = \dfrac{6}{3\cdot 1/5}\cdot \dfrac{1}{7} |
10,694 | J^2 = J^2 + (-1) + 1 = \left(J + 1\right)\cdot (J + (-1)) + 1 |
17,753 | D*Y = 0 = Y*D |
24,470 | k k + 2 k + 1 = (k + 1)^2 |
23,288 | 5/3 = \frac{1}{\tfrac{1}{1 + 1^{-1}} + 1} + 1 |
-6,739 | \frac{3}{10} + \frac{1}{100} \cdot 7 = 7/100 + \dfrac{30}{100} |
-20,403 | \frac{1}{p \cdot 4 + 12} \cdot (-p \cdot 7 + 21 \cdot (-1)) = -7/4 \cdot \frac{1}{p + 3} \cdot (3 + p) |
-23,041 | 8/9 = 2/3 \cdot \frac134 |
20,483 | A^\tau\cdot B^n = B^n\cdot A^\tau |
21,102 | e^{E + D} = e^E e^D = e^D e^E |
32,833 | \psi^{y \cdot z} = \psi^{y \cdot z} |
-3,338 | 6\cdot 2^{1/2} = (4 + 3 + (-1))\cdot 2^{1/2} |
16,863 | \tfrac{1}{(-1) a} = -\frac{1}{a} |
9,372 | -21 = \frac{1}{2}(35 (-1) - 7) |
13,402 | W^{\frac{1}{2}} K W^{\dfrac{1}{2}} = W K |
1,245 | y_1 + (-1) = y_2 + \left(-1\right) \implies y_1 = y_2 |
11,072 | z_k = z_k \cdot 2 |
-10,202 | \tfrac{1}{20}\cdot 20 = 1 |
7,217 | z + y = s \implies -z + s = y |
36,464 | \cos(22) \cdot \cos(38) - \sin(22) \cdot \sin(38) = \cos(22 + 38) = \cos\left(60\right) = \frac{1}{2} |
778 | 28 = \frac{120 + 8 (-1)}{5 + (-1)} |
10,516 | 7^4 - 7^3 + 7 \cdot 7 + 7\cdot \left(-1\right) + 1 = 2101 = 11\cdot 191 |
19,222 | -b + a = \frac{a^3 - b^2 \times b}{a^2 + a \times b + b^2} |
-585 | e^{\frac{5}{12}\cdot \pi\cdot i\cdot 14} = \left(e^{\frac{5}{12}\cdot \pi\cdot i}\right)^{14} |
2,995 | -\int x^{-\dfrac{1}{2}}\,dx = \int (-\frac{1}{\sqrt{x}})\,dx |
35,747 | 13 = 10 + \frac{1}{100}\cdot 30\cdot \left(20 + 10\cdot \left(-1\right)\right) |
14,931 | T_1 = Z*T_2 \Rightarrow \frac{\partial}{\partial T_2} T_1 = Z + \frac{\text{d}Z}{\text{d}T_2}*T_2 |
2,109 | 7 \cdot (67 \cdot z^2 + 7 \cdot y^2 + 10 \cdot y \cdot z) = 49 \cdot y^2 + y \cdot z \cdot 70 + z^2 \cdot 469 |
361 | \binom{3 + d + 4*\left(-1\right)}{3} + \binom{3 + d}{3} - 2*\binom{2*(-1) + 3 + d}{3} = 4*d |
30,006 | (2*3^r)^2 = 3^{r*2 + 1} + 3^{2*r} |
21,014 | x^3 + 3 \cdot x + 2 \cdot \left(-1\right) = 6 \cdot \left(-1\right) + (x^2 - x + 4) \cdot \left(1 + x\right) |
20,296 | |x \cdot z + (-1)| = |x \cdot z - x - z + 1 + x + z + 2 \cdot (-1)| = |(x + \left(-1\right)) \cdot (z + \left(-1\right)) + x + (-1) + z + (-1)| |
29,055 | {6 \choose 2}*4*7 {4 \choose 2} = 2520 |
6,450 | 2 - (z + 1)^2 = 1 - 2 \cdot z - z^2 |
-22,339 | \left(b + 5\cdot \left(-1\right)\right)\cdot (b + 1) = 5\cdot \left(-1\right) + b^2 - 4\cdot b |
13,385 | \pi \cdot 2 = \dfrac63 \cdot \pi |
1,425 | \left(-2\right) \cdot (-3) = -2 \cdot \left(0 + 3 \cdot \left(-1\right)\right) = 0 \cdot (-2) - 3 \cdot (-2) = 0 - -6 = 6 |
32,025 | 4 \cdot I = -3 \cdot A^2 + A^3\Longrightarrow A^3 - A^2 \cdot 3 + A \cdot 4 - 5 \cdot I = 4 \cdot A - I |
34,678 | -1/12 = 1 + 2 + \dots |
15,460 | \int\limits_x^1 \ldots\,dx = -\int_1^x \ldots\,dx |
-6,955 | 297 = 11\cdot 3\cdot 9 |
-1,631 | \pi \cdot \frac76 - \dfrac74 \cdot \pi = -\pi \cdot 7/12 |
4,247 | (m + 1 - s)\cdot {m \choose \left(-1\right) + s} = {m \choose s}\cdot s |
24,498 | y'' y + \frac{1}{y'}y'' = -y' + \dfrac{y''}{y'} + yy'' + y' |
-18,622 | -29/8 = -\frac{1}{16}\cdot 58 |
3,127 | \left((x + 1)^2 + (-1)\right)^{1/2} = (x^2 + x*2)^{1/2} |
-3,053 | 32^{1/2} - 8^{1/2} = -(4\cdot 2)^{1/2} + \left(16\cdot 2\right)^{1/2} |
7,957 | \cos{z} = \dfrac{\sin{2z}}{2\sin{z}} |
910 | \frac12*(1 + \cos{2*t}) = \cos^2{t} |
-3,646 | \frac{9 / 10}{q^3}*1 = \frac{9}{10*q^3} |
38,875 | 1/(1/0) = \frac{1}{1/0} |
35,869 | 14 = 2\cdot 7 = \left(3 + (-5)^{1 / 2}\right)\cdot (3 - (-5)^{\dfrac{1}{2}}) |
27,140 | |a - b| + |b - g| = -(a - b) + b - g = -a + 2b - g |
12,464 | 0.25 + m^2 - m = \left((-1)\cdot 0.5 + m\right)^2 |
38,463 | (-\rho)^2 = \rho^2 |
36,215 | 15/56 = \frac{1}{1680} \cdot 450 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.