id
int64
-30,985
55.9k
text
stringlengths
5
437k
-1,466
-\frac{18}{28} = \dfrac{(-18)\cdot 1/2}{28\cdot \tfrac{1}{2}} = -\frac{9}{14}
15,054
2 \cdot \left(-1\right) + z^2 = (z - \sqrt{2}) \cdot (\sqrt{2} + z)
1,799
(\dfrac{4}{\pi^2})^{1/2} = \dfrac{1}{\pi}*2
3,460
126 + 5 \cdot \left(-1\right) + 15 \cdot (-1) + 0 = 106
15,630
\tfrac12 + 7/(n*2) = \frac{1}{2*n}*(7 + n)
-21,647
-\frac19 = -\frac19
17,087
11 - 5*2 = 1
21,970
x + 2\cdot x^2 + x^3\cdot 3 + \cdots = \frac{x}{(1 - x)^2}
26,589
13 \frac{1}{2}(2(-1) + 13 + 1) = 78
-22,989
\frac{18}{63} = \frac{9*2}{7*9}
5,400
x = (\left(x + 7 \cdot (-1)\right)^2 + 11 \cdot \left(-1\right)) \cdot (\left(x + 7 \cdot (-1)\right)^2 + 11 \cdot \left(-1\right)) = (x^2 - 14 \cdot x + 38)^2
-22,365
q^2 - 14*q + 40 = (q + 4*(-1))*(q + 10*(-1))
10,525
-\frac{\pi}{6} + \pi \cdot 2 = \tfrac{\pi}{6} \cdot 11
9,805
(1 - z/l + (z/l) \cdot (z/l) + \cdots)/l = \frac{1}{l + z}
32,406
A^n\times A^0 = A^{n + 0}
272
151200 = 9! - 3*8!*2! + 3*7!*2!
9,680
\frac{1}{17 * 17}*48^2*(34^2 - y^2) = \left(95 - y\right)^2 = 95^2 - 190*y + y^2
8,208
\cos(\arcsin\left(p\right)) = \sqrt{\cos^2(\arcsin(p))} = \sqrt{1 - \sin^2\left(\arcsin(p)\right)} = \sqrt{1 - p^2}
12,091
\frac{\pi}{2}*45 + \pi/4*10 = \pi*25
711
\sqrt{\frac{1}{1 - p}\cdot (1 + p)} = \tfrac{1}{\sqrt{1 - p^2}}\cdot (1 + p) = (1 + p)\cdot \mathbb{E}[p]
-11,069
\frac12*86 = 43
-10,401
\frac{6}{\eta \cdot \eta\cdot 40} = \frac22\cdot \dfrac{3}{\eta^2\cdot 20}
41,774
0.027 = (\frac{1}{10}3)^3
26,036
-\pi \cdot p \cdot p + 4 \cdot \pi \cdot p \cdot p = \pi \cdot p^2 \cdot 3
14,550
a = \lim_{n \to \infty} \sin{n}\Longrightarrow a \in (-1,1) = \lim_{n \to \infty} \sin{n*2}
9,627
3 + g = 3 rightarrow g = 0
21,214
\dfrac12 \cdot (\cos(-B + A) - \cos(A + B)) = \sin{A} \cdot \sin{B}
-18,272
\frac{y \cdot y + y \cdot 6}{y^2 - y + 42 \cdot (-1)} = \frac{1}{(6 + y) \cdot \left(7 \cdot (-1) + y\right)} \cdot y \cdot \left(y + 6\right)
-11,539
12 + 3 \cdot \left(-1\right) + i \cdot 15 = 9 + 15 \cdot i
554
y*x - z*x + y*z = \left(y - z\right)*(-y + x) + y^2
29,281
(1 + 1)^{1/2} = 2^{1 / 2}
25,805
(z \cdot z + 1)^2 - (\sqrt{2} \cdot z)^2 = 1 + z^4
13,737
9*x^2 + 36*(-1) = 3*x^2 - 6^2 = (3*x + 6)*(3*x + 6*(-1)) = 3*(x + 2)*\left(3*x + 6*(-1)\right) = 9*(x + 2)*\left(x + 2*(-1)\right)
-14,583
(2 + 3 \times 5) - 2 \times 8 = (2 + 15) - 2 \times 8 = 17 - 2 \times 8 = 17 - 16 = 1
-3,952
\frac{1}{4}8 \frac{x^2}{x^2} = \dfrac{x^2 \cdot 8}{x^2 \cdot 4}
-4,492
((-1) + X) \cdot \left(3 \cdot (-1) + X\right) = X \cdot X - 4 \cdot X + 3
-30,368
\int ((-1) + 2 \cdot y) \cdot (2 \cdot y + 1)\,\mathrm{d}y = \int (4 \cdot y^2 + \left(-1\right))\,\mathrm{d}y
8,067
p^3 + (q + x)^3 + 4 p q x - 3 q x \cdot (x + q) = 4 p x q + p p p + q^3 + x^3
40,497
((9!)!)! \lt (9^{8\cdot 9^8})^{9^{8\cdot 9^8}} \lt (9^{9^9})^{9^{8\cdot 9^8}} = 9^{9^{8\cdot 9^8}\cdot 9^9} = 9^{9^{8\cdot 9^8 + 9}}
-11,700
\frac{125}{64} = (\dfrac54)^3
12,988
2^4 \cdot 3 - 2 \cdot 2^2 \cdot 3 + 2^2 = 28
33,799
101 = \frac{1}{50}*5050
-13,244
\dfrac{1}{4 + 2\cdot (-1)}\cdot 6 = \frac{6}{2} = \frac62 = 3
38,060
x^2 \cdot z^2 = (x \cdot z)^2
-1,171
\dfrac53\cdot 6/7 = \dfrac{6}{3\cdot 1/5}\cdot \dfrac{1}{7}
10,694
J^2 = J^2 + (-1) + 1 = \left(J + 1\right)\cdot (J + (-1)) + 1
17,753
D*Y = 0 = Y*D
24,470
k k + 2 k + 1 = (k + 1)^2
23,288
5/3 = \frac{1}{\tfrac{1}{1 + 1^{-1}} + 1} + 1
-6,739
\frac{3}{10} + \frac{1}{100} \cdot 7 = 7/100 + \dfrac{30}{100}
-20,403
\frac{1}{p \cdot 4 + 12} \cdot (-p \cdot 7 + 21 \cdot (-1)) = -7/4 \cdot \frac{1}{p + 3} \cdot (3 + p)
-23,041
8/9 = 2/3 \cdot \frac134
20,483
A^\tau\cdot B^n = B^n\cdot A^\tau
21,102
e^{E + D} = e^E e^D = e^D e^E
32,833
\psi^{y \cdot z} = \psi^{y \cdot z}
-3,338
6\cdot 2^{1/2} = (4 + 3 + (-1))\cdot 2^{1/2}
16,863
\tfrac{1}{(-1) a} = -\frac{1}{a}
9,372
-21 = \frac{1}{2}(35 (-1) - 7)
13,402
W^{\frac{1}{2}} K W^{\dfrac{1}{2}} = W K
1,245
y_1 + (-1) = y_2 + \left(-1\right) \implies y_1 = y_2
11,072
z_k = z_k \cdot 2
-10,202
\tfrac{1}{20}\cdot 20 = 1
7,217
z + y = s \implies -z + s = y
36,464
\cos(22) \cdot \cos(38) - \sin(22) \cdot \sin(38) = \cos(22 + 38) = \cos\left(60\right) = \frac{1}{2}
778
28 = \frac{120 + 8 (-1)}{5 + (-1)}
10,516
7^4 - 7^3 + 7 \cdot 7 + 7\cdot \left(-1\right) + 1 = 2101 = 11\cdot 191
19,222
-b + a = \frac{a^3 - b^2 \times b}{a^2 + a \times b + b^2}
-585
e^{\frac{5}{12}\cdot \pi\cdot i\cdot 14} = \left(e^{\frac{5}{12}\cdot \pi\cdot i}\right)^{14}
2,995
-\int x^{-\dfrac{1}{2}}\,dx = \int (-\frac{1}{\sqrt{x}})\,dx
35,747
13 = 10 + \frac{1}{100}\cdot 30\cdot \left(20 + 10\cdot \left(-1\right)\right)
14,931
T_1 = Z*T_2 \Rightarrow \frac{\partial}{\partial T_2} T_1 = Z + \frac{\text{d}Z}{\text{d}T_2}*T_2
2,109
7 \cdot (67 \cdot z^2 + 7 \cdot y^2 + 10 \cdot y \cdot z) = 49 \cdot y^2 + y \cdot z \cdot 70 + z^2 \cdot 469
361
\binom{3 + d + 4*\left(-1\right)}{3} + \binom{3 + d}{3} - 2*\binom{2*(-1) + 3 + d}{3} = 4*d
30,006
(2*3^r)^2 = 3^{r*2 + 1} + 3^{2*r}
21,014
x^3 + 3 \cdot x + 2 \cdot \left(-1\right) = 6 \cdot \left(-1\right) + (x^2 - x + 4) \cdot \left(1 + x\right)
20,296
|x \cdot z + (-1)| = |x \cdot z - x - z + 1 + x + z + 2 \cdot (-1)| = |(x + \left(-1\right)) \cdot (z + \left(-1\right)) + x + (-1) + z + (-1)|
29,055
{6 \choose 2}*4*7 {4 \choose 2} = 2520
6,450
2 - (z + 1)^2 = 1 - 2 \cdot z - z^2
-22,339
\left(b + 5\cdot \left(-1\right)\right)\cdot (b + 1) = 5\cdot \left(-1\right) + b^2 - 4\cdot b
13,385
\pi \cdot 2 = \dfrac63 \cdot \pi
1,425
\left(-2\right) \cdot (-3) = -2 \cdot \left(0 + 3 \cdot \left(-1\right)\right) = 0 \cdot (-2) - 3 \cdot (-2) = 0 - -6 = 6
32,025
4 \cdot I = -3 \cdot A^2 + A^3\Longrightarrow A^3 - A^2 \cdot 3 + A \cdot 4 - 5 \cdot I = 4 \cdot A - I
34,678
-1/12 = 1 + 2 + \dots
15,460
\int\limits_x^1 \ldots\,dx = -\int_1^x \ldots\,dx
-6,955
297 = 11\cdot 3\cdot 9
-1,631
\pi \cdot \frac76 - \dfrac74 \cdot \pi = -\pi \cdot 7/12
4,247
(m + 1 - s)\cdot {m \choose \left(-1\right) + s} = {m \choose s}\cdot s
24,498
y'' y + \frac{1}{y'}y'' = -y' + \dfrac{y''}{y'} + yy'' + y'
-18,622
-29/8 = -\frac{1}{16}\cdot 58
3,127
\left((x + 1)^2 + (-1)\right)^{1/2} = (x^2 + x*2)^{1/2}
-3,053
32^{1/2} - 8^{1/2} = -(4\cdot 2)^{1/2} + \left(16\cdot 2\right)^{1/2}
7,957
\cos{z} = \dfrac{\sin{2z}}{2\sin{z}}
910
\frac12*(1 + \cos{2*t}) = \cos^2{t}
-3,646
\frac{9 / 10}{q^3}*1 = \frac{9}{10*q^3}
38,875
1/(1/0) = \frac{1}{1/0}
35,869
14 = 2\cdot 7 = \left(3 + (-5)^{1 / 2}\right)\cdot (3 - (-5)^{\dfrac{1}{2}})
27,140
|a - b| + |b - g| = -(a - b) + b - g = -a + 2b - g
12,464
0.25 + m^2 - m = \left((-1)\cdot 0.5 + m\right)^2
38,463
(-\rho)^2 = \rho^2
36,215
15/56 = \frac{1}{1680} \cdot 450