id
int64
-30,985
55.9k
text
stringlengths
5
437k
-4,408
\dfrac{1}{x^2 - 6*x + 8}*(4*x + 18*(-1)) = -\frac{1}{x + 4*(-1)} + \frac{5}{2*(-1) + x}
24,330
a\cdot t = a\cdot t
-26,593
x^2 - 9^2 = \left(9 + x\right) (x + 9(-1))
-12,909
25 + 10*(-1) = 15
22,352
b \cdot b + a^2 + 2\cdot a\cdot b = (a + b)^2
1,297
y^2 + y \times 6 + 9 = (y + 3)^2
21,529
m = g_m \cdot x_m = g_m \cdot x_m \implies \frac{1}{x_m} \cdot x_m = g_m/(g_m)
3,633
\cos(\arcsin{z}) = \sqrt{1 - \sin^2(\arcsin{z})} = \sqrt{1 - z \times z}
13,695
\frac{m^2}{1 + m^3} = \frac{1}{m + \frac{1}{m^2}}
12,020
4^{p\cdot 2}\cdot 4^2 + 4 = 4^{2\cdot p + 2} + 4
-15,892
-10 \cdot \frac{7}{10} + 3/10 \cdot 5 = -\frac{55}{10}
-2,732
\sqrt{25}\cdot \sqrt{7} + \sqrt{4}\cdot \sqrt{7} = 5\cdot \sqrt{7} + \sqrt{7}\cdot 2
29,273
H^2 F^2 = (FH)^2
-2,460
\sqrt{7} \cdot \left(4 + 2 \cdot (-1)\right) = 2 \cdot \sqrt{7}
12,969
y^2 + y\cdot 3 + 2 = (y + 1)\cdot (y + 2)
-26,544
-9*z^2 + 100 = -\left(3*z\right)^2 + 10^2
28,560
-1 = \omega \cdot \omega^r = \omega^{r+1} \quad(**)
13,222
y^6 = (1 - y)*\left(2 - 3*y\right) = 3*y^2 - 5*y + 2 = 3*\left(1 - y\right) - 5*y + 2 = 5 - 8*y
14,943
2((q + (-1))/2 + 1) = q + 1
9,636
-1/(\sqrt{2}) = \sin(\dfrac{1}{4}((-1) \pi))
9,646
\dfrac12\pi - \frac{1}{4}\pi = \dfrac{1}{4}\pi
2,180
S + 15 = x - S\Longrightarrow x = S*2 + 15
-19,100
\frac{5}{8} = \frac{G_q}{16 \pi}*16 \pi = G_q
-2,092
\pi \dfrac{23}{12} + \pi/2 = \frac{29}{12} \pi
5,427
(k + 1)! + (k + 1)!*(k + 1) = \left(k + 1\right)!*(1 + k + 1) = (k + 2)!
-29,066
192.4 = 8\cdot 24.05
28,491
\dfrac{1}{z\cdot (z + (-1))} = \frac{1}{z + (-1)} - \frac1z
-12,015
4/5 = \frac{1}{8 \cdot \pi} \cdot s \cdot 8 \cdot \pi = s
2,701
\left(x \cdot 3 = \frac13 \cdot \left(x + y + z\right) \Rightarrow z + y = 8 \cdot x\right) \Rightarrow \tfrac12 \cdot \left(y + z\right) = x \cdot 4
-17,541
42 = 12 + 30
-11,887
8.395/1000 = 8.395 \cdot 0.001
37,847
e z = e z
24,822
616 = 2 ^ 3 \cdot 7 \cdot 11
8,532
1 + 3*m^2 - m*3 = m^3 - (m + (-1))^3
7,330
\cos{\frac14 \cdot \pi} - \frac{\pi}{4 \cdot \sin{\dfrac14 \cdot \pi}} = \frac{\sqrt{2}}{2 \cdot (1 - \pi/4)} > 0
44,935
3^4*3^4 = 3^4 * 3^4
-19,471
\dfrac{\frac17}{4 \cdot 1/9} \cdot 2 = 9/4 \cdot 2/7
-20,196
\dfrac{1}{4 + z \cdot 4} \cdot \left(7 + 7 \cdot z\right) = \frac{1}{4} \cdot 7 \cdot \frac{1}{1 + z} \cdot (z + 1)
-9,331
63 \cdot d + 63 = 3 \cdot 3 \cdot 7 + d \cdot 3 \cdot 3 \cdot 7
15,911
\left(b + a\right)^2 = b^2 + a^2 + a\times b\times 2
-29,347
-b^2 + c^2 = (c + b)\cdot (-b + c)
32,433
1 + 3\cdot 8 = 5^2
13,862
(1 + x)^{n + 1} = (1 + x) \cdot (1 + x)^n \geq (1 + x) \cdot (1 + n \cdot x) = 1 + (n + 1) \cdot x + n \cdot x^2 \geq 1 + (n + 1) \cdot x
31,497
\left\{0, 2, \ldots, 1\right\} = \mathbb{N}
1,405
\mathbb{E}[D \cdot v] = v \cdot D
-20,038
\dfrac{1}{72 + p\cdot 56}\cdot \left(-35\cdot p + 45\cdot \left(-1\right)\right) = -\dfrac{1}{8}\cdot 5\cdot \frac{9 + 7\cdot p}{7\cdot p + 9}
-5,734
\frac{3}{p \cdot 5 + 10 \cdot (-1)} = \tfrac{3}{5 \cdot (p + 2 \cdot \left(-1\right))}
2,640
\mathbb{E}(C_2 + C_1) = \mathbb{E}(C_1) + \mathbb{E}(C_2)
29,727
\frac{\mathrm{d}}{\mathrm{d}y} \sec(y) = \tan\left(y\right) \cdot \sec(y)
-2,905
\sqrt{48} + \sqrt{3} = \sqrt{3} + \sqrt{16\cdot 3}
-1,245
-10/12 = ((-10)\cdot \frac{1}{2})/(12\cdot 1/2) = -\frac{5}{6}
15,541
2\cdot x + 5\cdot z + 1 = 2\cdot x + 5\cdot z + 5 + 4\cdot (-1) = 2\cdot (x + 2\cdot \left(-1\right)) + 5\cdot (z + 1)
15,982
1 + 6^5 = \left(1 + 6\right)\cdot (6^3\cdot 5 + 6\cdot 5 + 1)
16,323
(H + A)\cdot (-H + A) = A \cdot A - H^2
47,327
x \times \tan(\tfrac{\pi}{2 + x}) = \frac{1}{\tan(\pi/2 - \frac{\pi}{2 + x})} \times x = \frac{1}{\tan(\frac{\pi \times x}{2 \times x + 4})} \times x = \frac{\pi \times x \times \frac{1}{2 \times x + 4}}{\tan(\frac{\pi \times x}{2 \times x + 4} \times 1)} \times (2 \times x + 4)/\pi
2,165
\frac{1}{TS} = \frac{1}{ST}
-29,520
4!/2! = \frac1224 = 12
-1,704
-4/3 \pi + \frac{11}{6} \pi = \pi/2
33,761
\mathbb{E}[V] + \mathbb{E}[B] = \mathbb{E}[V + B]
7,670
1 + l + 2(-1) - i = l + 2(-1) - (-1) + i
13,089
77/216 = \dfrac{1}{216}\cdot 5 + 2/27 + \dfrac{4}{27} + \frac{1}{9}
7,228
8 + 8 \left(-1\right) + (1 + 8)*10 = 90
16,212
840 \cdot 883 + 882 = 840 \cdot 883 + 991 + 109 \cdot \left(-1\right)
21,684
(x + 1) \cdot (x + 1) - x^2 = 2 \cdot x + 1 = x + 1 + x
-2,875
\sqrt{3} + 4 \cdot \sqrt{3} = \sqrt{3} + \sqrt{16} \cdot \sqrt{3}
-18,386
\frac{(r + 2(-1)) (1 + r)}{r*(1 + r)} = \frac{r^2 - r + 2(-1)}{r^2 + r}
-27,645
1 + 3 + 5\cdot \left(-1\right) = 4 + 5\cdot (-1) = -1
28,915
x^3 + x^6 + x^5 + x^4 = (x + x^3) (x^2 + x^3)
-20,637
\frac{1}{-z*21 + 14}(z*18 + 12 \left(-1\right)) = \tfrac{1}{-z*3 + 2}(2 - 3z) \left(-6/7\right)
-24,508
8 + 3^2 = 8 + 3*3 = 8 + 9 = 17
25,212
2 \cos{z} \sin{z} = \sin{z \cdot 2}
-19,731
\frac{1}{9}\cdot 49 = 7\cdot 7/(9)
2,285
\{g \frac{N}{g}, N\} \Rightarrow N = N/g g
23,416
0 \cdot ( 1, 0) + 0 \cdot \left( 0, 1\right) = 0 \cdot \left( 1, 2\right) + 0 \cdot ( 3, 5)
-24,755
\frac14(-6^{1 / 2} + 2^{\frac{1}{2}}) = \cos\left(\frac{7\pi}{12}\right)
-27,499
30 \cdot x^3 = 2 \cdot 3 \cdot 5 \cdot x \cdot x \cdot x
-4,948
\dfrac{10}{10^6} = \frac{10.0}{10^6}
-20,895
4/9\cdot (-4/(-4)) = -16/\left(-36\right)
32,666
y^2 + 2 + \tfrac{1}{y^2} = (y + 1/y)^2
14,353
z + (-1) + y + (-1) + y \cdot z - z - y + 1 = (-1) + y \cdot z + z - z + y - y + 1 + (-1)
17,962
\left(d \cdot b + c \cdot a\right)^2 + (a \cdot d - c \cdot b) \cdot (a \cdot d - c \cdot b) = (d^2 + c^2) \cdot (a^2 + b^2)
-6,478
\frac{2}{3\cdot (-1) + 3\cdot p} = \frac{2}{((-1) + p)\cdot 3}
11,544
l*w^2 = w*l*w
-22,172
\frac17\times 9 = 45/35
10,954
-t \cdot t + t^4 = 2 + (1 + t^2)\cdot (t \cdot t + 2\cdot \left(-1\right))
30,044
1/2 + \frac{1}{3} + 1/6 = 1
-1,987
\pi \cdot \frac{5}{12} + \pi \cdot \frac{7}{12} = \pi
27,245
1000 = 18 \cdot 18 + 26^2
17,768
\frac{1}{2} 3 d + d = d*5/2
20,432
\sin{2\times t} = 2\times \sin{t}\times \cos{t}
-9,314
45 - h\cdot 15 = -h\cdot 3\cdot 5 + 3\cdot 3\cdot 5
-20,998
-3/(-3) \left(-\dfrac176\right) = \dfrac{18}{-21}
31,914
21 x^{5/2} = x^2*21 \sqrt{x}
-6,589
\frac{1}{(m + 2\left(-1\right)) (7 + m)} = \frac{1}{m^2 + 5m + 14 (-1)}
-7,385
\frac{2}{12} \cdot 6/11 = 1/11
42,135
e^{\log_e(s_1)} = s_1
15,348
E\left(X - 2 \cdot (X + (-1)) \cdot (X + (-1))\right) = E\left(X - 2 \cdot (X \cdot X - 2 \cdot X + 1)\right) = E\left(-2 \cdot X^2 + 5 \cdot X + 2 \cdot (-1)\right) = -2 \cdot E\left(X \cdot X\right) + 5 \cdot E\left(X\right) + 2 \cdot \left(-1\right)
-3
-15 + 4 (-1) = -19
18,432
1/(a_2\cdot a_1) = \frac{1}{a_2\cdot a_1}
14,989
(2\cdot b \cdot b + a^2 - b\cdot a\cdot 2)\cdot (b^2\cdot 2 + a^2 + 2\cdot a\cdot b) = 4\cdot b^4 + a^4