id
int64
-30,985
55.9k
text
stringlengths
5
437k
23,862
\left(p - x - \sqrt{x^2 + 1}\right) (\sqrt{x^2 + 1} + p - x) = p * p - xp*2 + (-1)
-20,285
\frac11 \cdot 1 = \dfrac{z + 8 \cdot (-1)}{z + 8 \cdot (-1)}
9,007
x = \frac{1}{x}\left(x^2 + 1\right) = x + 1/x
-1,706
π\cdot \frac{17}{12} + π\cdot \dfrac{1}{12}\cdot 17 = π\cdot \frac{17}{6}
-2,390
(-8)^3 = \left(-8\right) (-8) \left(-8\right) = 64 (-8) = -512
22,917
-(3/5 + 2) = -\frac{3}{5} - 2
20,819
4^2 - 3*4 + 2\left(-1\right) = 2 = \sqrt{4}
-20,192
\frac{49\cdot (-1) + y\cdot 56}{49\cdot (-1) - 70\cdot y} = 7/7\cdot \dfrac{7\cdot (-1) + y\cdot 8}{7\cdot (-1) - y\cdot 10}
6,319
\left(1 + b\right)\cdot \left((-1) + b\right) = b^2 + (-1)
-18,766
(-1)*0.6179 + 1 = 0.3821
20,518
k\cdot \frac{1}{k^n} = \frac{1}{k^{n-1}}
3,607
\frac{z^l}{z^l + 7} = \frac{1}{1 + \frac{7}{z^l}}
15,287
|u*y| = |u|*|y|
13,803
\frac{1}{3}*\left(-\frac13 + 1\right) = \frac29
25,513
z^2 + 2 \cdot z + 1 = (z + 1)^2
19,842
8 + \dfrac{1}{3} - \frac{1}{z} = y\Longrightarrow \left[3, 8\right] = [z,y]
-13,244
\frac{1}{4 + 2(-1)}6 = 6/2 = \frac{6}{2} = 3
-5,318
7.1 \cdot 10^{-4 + 5} = 10^1 \cdot 7.1
-24,228
9 + 5^2 = 9 + 5 \cdot 5 = 9 + 25 = 34
29
0 = A \cdot Z + A \cdot Z \implies Z \cdot A = -A \cdot Z
17,143
n^2 = n*\sum_{x=1}^n 1 = \sum_{x=1}^n n
-6,465
\frac{1}{4 \cdot s + 32} = \frac{1}{4 \cdot (s + 8)}
-7,645
\frac{1}{i + 5} \cdot (-7 \cdot i + 17) \cdot \dfrac{1}{-i + 5} \cdot (5 - i) = \dfrac{17 - 7 \cdot i}{i + 5}
-4,089
\tfrac{44}{z^5 \cdot 12} z z z = 44/12 \frac{1}{z^5} z^3
-5,258
\frac{1}{1000}0.66 = \frac{0.66}{1000}
-3,726
\frac{s^5*40}{5*s^4} = \frac15*40*\frac{1}{s^4}*s^5
-6,718
\dfrac{0}{10} + 8/100 = \dfrac{8}{100} + \frac{1}{100}0
-7,936
\left(100 - 105\cdot i - 40\cdot i + 42\cdot (-1)\right)/29 = \frac{1}{29}\cdot (58 - 145\cdot i) = 2 - 5\cdot i
1,835
\sin(x) = \cos(x)*\tan\left(x\right)
-24,355
\frac{1}{9 + 8}\times 34 = 34/17 = 34/17 = 2
-29,363
(y + 4)\cdot \left(y + 6\right) = y^2 + 6\cdot y + 4\cdot y + 24 = y^2 + 10\cdot y + 24
9,730
-\sin^2\left(\theta\right) \cdot 2 + 1 = \cos\left(\theta \cdot 2\right)
-4,048
\frac{c^4\cdot 54}{30\cdot c^2} = 54/30\cdot \frac{c^4}{c^2}
26,682
(17/21)^3 + \left(37/21\right)^3 = 6
20,475
b*d_2 = b*d_2
23,318
\int\limits_0^π \cos^{2 \cdot m + 1}{t}\,dt = 0 = \int\limits_0^{2 \cdot π} \cos^{2 \cdot m + 1}{t}\,dt
30,662
0 = Y_1*Y_2 - Y_1 - Y_2 + 1 = (Y_1 + \left(-1\right))*(Y_2 + (-1))
30,638
x^a*x^b = x^{b + a}
2,679
y + z*2 = \frac{\partial}{\partial z} ((z + y)*z)
9,495
{m_2 \choose m_1} = \tfrac{m_2!}{(m_2 - m_1)!*m_1!}
22,016
d^{W + n} = d^n*d^W
39,886
\frac{1}{8} 3 = 0.375
11,593
(l + 1)^3 + (-1) = l^3 + 3 \cdot l^2 + 3 \cdot l + 1 + (-1) = l^3 + 3 \cdot l^2 + 3 \cdot l
11,376
(e^z + (-1))/z = P \implies Pz + 1 = e^z
27,987
\cos(180 - b + 90 \left(-1\right)) = \cos\left(90 - b\right) = \sin{b}
13,183
1 \gt \frac19\cdot 4
4,218
\frac{π}{2*3} = π/6
26,771
200 \times 0.09 = ((-1) \times 0.1 + 1) \times 200 \times 0.1
-4,083
\tfrac{2}{p^2} = \frac{1}{p^2} \times 2
49,841
29!*10 = 88417619937397019545436160000000
-20,777
\tfrac{t + 4}{t + 4} (-4/7) = \frac{1}{7t + 28}(16 (-1) - t*4)
-4,303
3/2\cdot d = 3\cdot d/2
11,423
\tan(\tan^{-1}(x) + \tan^{-1}\left(x^3\right)) = \frac{1}{1 - x^4} \cdot (x + x \cdot x \cdot x) = \tfrac{1}{1 - x^2} \cdot x
19,024
0 = 1 + z \times z - z \Rightarrow 1 + z^3 = 0
34,712
3!\cdot 3\cdot (4 + 12 + 2) = 324
-29,627
x^3 \cdot 8 + 3 \cdot x \cdot x + x \cdot 6 = \frac{\text{d}}{\text{d}x} (x^4 \cdot 2 + x^3 + 3 \cdot x^2)
14,585
\int e^g \cdot e^{-x \cdot g}\,dg = \int e^{g - x \cdot g}\,dg = \int e^{(1 - x) \cdot g}\,dg
7,941
E*( iu, v) = E*( -u, iv) = -E*\left( u, iv\right)
-1,076
10/56 = \frac{10*\frac{1}{2}}{56*\frac12} = 5/28
19,271
1 - 2*(1 + \left(-1\right))/m = 1 - 2/m \leq 1 - 1/m
-10,553
10/(3a) \frac55 = 50/(15 a)
-22,839
\frac{21}{28} = \tfrac{7}{4 \cdot 7} \cdot 3
-20,102
\frac{1}{k \cdot (-12)} \cdot \left(36 \cdot (-1) - 4 \cdot k\right) = 4/4 \cdot \frac{1}{k \cdot (-3)} \cdot (9 \cdot (-1) - k)
-20,068
\frac{1}{r \cdot (-20)} \cdot (\left(-45\right) \cdot r) = \frac{(-5) \cdot r}{(-5) \cdot r} \cdot \tfrac{9}{4}
36,347
1 = exp(i \cdot 0)
-7,865
\frac15 \cdot (-2 + i + 4 \cdot i + 2) = \tfrac{1}{5} \cdot \left(0 + 5 \cdot i\right) = i
21,852
\alpha |Z|^2 + x|Z^2| = \alpha |Z|^2 + x|Z|^2 = \left(\alpha + x\right) |Z|^2
-6,465
\frac{1}{4(8 + p)} = \frac{1}{32 + 4p}
8,828
\sqrt{9 + p^2}*\frac154 = p rightarrow p = 4
37,354
(x + T)\cdot \left(x - T\right) = x \cdot x - T^2
28,186
z^4 + z \cdot z + 1 = z^4 + 2\cdot z^2 + 1 - z^2 = (z^2 + z + 1)\cdot (z^2 - z + 1)
9,001
y^6 = (2 \times y + (-1))^2 = 4 \times y \times y - 4 \times y + 1 = 4 \times \left(1 - y\right) - 4 \times y + 1 = 5 - 8 \times y
15,906
8 = (1 \cdot 2^6 + 6 \cdot 0 + 2^4 \cdot 3 + 2 \cdot 2^2 \cdot 6 + 2^2 \cdot 8)/24
-23,394
\frac{3}{20} = \frac{2}{5}\cdot \frac38
-1,469
-7/9 \cdot (-9/5) = \frac{1/9 \cdot \left(-7\right)}{(-1) \cdot 5 \cdot \frac{1}{9}}
7,173
\frac{1}{d_1} \cdot d_2 = d_2/(d_1)
8,190
k \cdot x = N \Rightarrow x = N/k
4,687
VAR(C) = VAR(C_1 + \dotsm + C_{10}) = VAR(C_1) + \dotsm + VAR(C_{10})
24,465
45 = 0 + 5^3*0 + 5^2 + 4*5
-6,384
\frac{1}{(q + 8 (-1))*3} = \frac{1}{3 q + 24 (-1)}
18,685
(m^2 - l^2)^2 + (2 \cdot m \cdot l)^2 = m^4 + 2 \cdot m^2 \cdot l \cdot l + l^4 = (m^2 + l \cdot l)^2
3,949
z + \sqrt{1 + z^2} = \dfrac{1}{-z + \sqrt{z^2 + 1}}
23,938
1 = (-1) \cdot (-1) = (z + 1/z) \cdot (z^2 + \frac{1}{z^2}) = z^3 + z + 1/z + \frac{1}{z^3} = z^3 + (-1) + \frac{1}{z^3}
14,792
(i + 1)! (i + 1) + (1 + i)! + (-1) = (-1) + (1 + i + 1) (1 + i)!
-4,419
\frac{-x + 11\cdot \left(-1\right)}{x^2 - x\cdot 6 + 5} = -\frac{1}{x + 5\cdot (-1)}\cdot 4 + \frac{3}{(-1) + x}
25,937
\sin(\pi-\alpha)=\sin\alpha
-22,775
8\cdot 5/\left(4\cdot 8\right) = \frac{40}{32}
-187
\dfrac{6!}{5! (5(-1) + 6)!} = \binom{6}{5}
21,072
\left(z + 2*(-1)\right)*(z + 3*(-1)) = 6 + z * z - 5*z
-4,233
7l^2/6 = l^2\cdot \frac{7}{6}
32,906
40/24 = \frac53
943
\dfrac{1}{hf} = \tfrac{1}{hf}
33,611
i^2 = (-i) \times (-i)
14,975
\left(h + x\right)\cdot (h + x) = h\cdot h + h\cdot 2\cdot x + x\cdot x
19,459
2^{m\cdot 2 + 2\cdot \left(-1\right)} = 2^{m + \left(-1\right)} \cdot 2^{m + \left(-1\right)}
-7,322
\tfrac35\cdot 5/6 = \frac{1}{2}
-8,428
8 = (-1) \times \left(-8\right)
23,067
\frac{1}{a*b} = \dfrac{1}{b*a}
13,916
\left(z\cdot y\right)^2 = z\cdot y\cdot z\cdot y = z \cdot z\cdot y^2 = z\cdot y
22,794
(-1)^{c - b} = \left(-1\right)^{c - b}*(-1)^{2*b} = (-1)^{c + b}