id
int64
-30,985
55.9k
text
stringlengths
5
437k
31,674
20 = 10*((-1) + 3)
-22,354
s^2 - s \cdot 5 + 4 = (s + 4(-1)) ((-1) + s)
-8,548
\frac68 - 1/12 = \frac{6}{8\cdot 3}\cdot 3 - \frac{1\cdot 2}{12\cdot 2} = \frac{1}{24}\cdot 18 - 2/24 = (18 + 2\cdot \left(-1\right))/24 = 16/24
24,795
7^2 + 6^2 = 9^2 + 2^2
1,345
10 + n^2 - 7\cdot n = 2\cdot (-1) + (n + 4\cdot \left(-1\right))\cdot (n + 3\cdot (-1))
24,569
\tan{3A} - \tan{A} = \dfrac{1}{\cos{3A} \cos{A}}\sin(3A - A) = 2\sin{A}/\cos{3A}
30,711
(-2 * 2)^3 = (-4)^3 = -64
21,122
a^i*a = a^{1 + i}
9,377
-2\cdot y = -y\cdot 2
26,299
\sqrt{M_1}*\sqrt{M_1} = M_1
16,532
-7*4 + 15*2 = 2
13,560
1/\sec\left(A\right) = \cos(A)
-30,443
8 = 3\cdot 2^2 + X = 12 + X
3,175
(-a + x) (-b + x) = ab + x^2 - x*(b + a)
13,362
2^{k + 2} + 8*3^{2*k + 1} = 3^{1 + k*2}*7 + 3^{2*k + 1} + 2^{2 + k}
-10,778
\dfrac{35}{20\cdot (-1) + 5\cdot q} = 5/5\cdot \tfrac{1}{4\cdot (-1) + q}\cdot 7
31,082
1 + \dfrac{1}{1/(1/3\cdot 5) + 1} = 1 + \frac{1}{1 + \frac{1}{1 + 2/3}}
-10,265
-\frac{135}{15 \cdot z + 30} = -\frac{9}{z + 2} \cdot 15/15
19,907
(f + a)^2 = f \cdot f + a \cdot a + f \cdot a \cdot 2
31,978
3/1329227995784915872903807060280344576 = \dfrac{1}{2^{120}} 3
8,352
8 \cdot 8 + (-1) = 3^2 \cdot 7
16,604
0 = -\cos(\pi*2) + 1
-7,764
\frac{2\times i - 10}{2 + i\times 2} = \frac{i\times 2 - 10}{2\times i + 2}\times \frac{-2\times i + 2}{2 - 2\times i}
7,884
t_2\times t_1\times u_1 = t_1\times t_2\times u_1
-13,415
6*3 + 8*60/10 = 6*3 + 8*6 = 18 + 8*6 = 18 + 48 = 66
-22,424
125^{\tfrac{2}{3}} = (125^{\frac13})^2 = 5^2 = 5*5 = 25
505
(a^2 + b^2)^3 = 8^2 = 64\Longrightarrow 4 = a^2 + b^2
14,092
\frac{\sqrt{6}\times 2\times \frac{1}{2}}{8\times 1/2} = \dfrac{\sqrt{6}}{4}
25,772
\sin^2(y) - \cos(y)*\left(1 - \cos(y)\right) = \sin^2(y) + \cos^2\left(y\right) - \cos(y) = 1 - \cos(y)
-19,707
\frac{54}{7} \cdot 1 = \frac{54}{7}
-4,773
-\frac{1}{x + 2\cdot (-1)}\cdot 3 + \dfrac{1}{x + 1}\cdot 5 = \frac{2\cdot x + 13\cdot \left(-1\right)}{2\cdot \left(-1\right) + x^2 - x}
18,718
z^{l + \vartheta} = z^\vartheta z^l
19,031
1/\left(D\cdot G\right) = 1/\left(D\cdot G\right)
-9,090
147.9\% = \frac{1}{100}*147.9
36,780
25=5^2=3^2+4^2
-474
\frac53 \cdot \pi = 95/3 \cdot \pi - 30 \cdot \pi
39,971
0 = \left(-1\right)^1 + 1
14,344
x*K = x*z*x*K = x*K*z*K*x*K
7,636
1 + 3 + 5 + \dotsm + n\cdot 2 + 1 = \left(1 + n\right)^2
18,490
\dfrac{y}{1 + y} = -\dfrac{1}{y + 1} + 1
1,262
3 + 7a = 2a + 1 + \left(a\cdot 5 + 2\right)
39,529
(S \cdot C)^Z \cdot G = C^Z \cdot S^Z \cdot G = C^Z \cdot S \cdot G
26,558
y \cdot y \cdot y = i \cdot 3 + 4 \Rightarrow (4 + 3 \cdot i)^{1/3} = y
-7,336
\frac{4}{45} = \frac49 \cdot \dfrac{2}{10}
10,196
2^k + \left(-1\right) + (-1) = 2^k + 2(-1)
22,048
{h \choose e} = {h + (-1) \choose (-1) + e} + {(-1) + h \choose e}
3,912
\left(-(g - \frac12\cdot 9) = 0 \implies 0 = 9/2 - g\right) \implies 9/2 = g
21,057
t = (-1) + k rightarrow \left\lfloor{(t + 1)^2/k}\right\rfloor = k > k + \left(-1\right)
25,624
\dfrac{\frac{1}{2}}{2}\cdot \left((-1) + 49\right) + \frac{1}{4}\cdot (\binom{49}{2} - \frac{1}{2}\cdot (49 + (-1))) = 300
3,356
\left(q^2 = 3 \cdot (-1) + m^2 - m \cdot 6 \implies (3 \cdot (-1) + m)^2 + 12 \cdot (-1) = q^2\right) \implies (m + q + 3 \cdot (-1)) \cdot (3 \cdot (-1) + m - q) = 12
25,403
(-1 + 13^{1 / 2})/6 = -\frac16 + \frac16 \cdot 13^{1 / 2}
760
-75 = 50 + (-5/2)^3*8
11,319
0 = 3 - h + 4 - h \Rightarrow h = 3.5
6,033
2 = \frac{2}{3 - \dfrac{2}{2\cdot (-1) + 3}}
7,224
y^4 = y^2 - y \cdot y \cdot y = -3 \cdot y + 2
22,770
3^2 + 3 \times (-1) + \left(-1\right) = 9 + 3 \times (-1) + \left(-1\right) = 0
-2,614
((-1) + 3 + 5)\cdot \sqrt{10} = 7\cdot \sqrt{10}
8,356
-(-a + h) = a - h
-16,068
8*7*6 = \dfrac{8!}{(8 + 3*(-1))!} = 336
40,456
(a + (-1)) \cdot (a + (-1)) + a + (-1) + a = a^2
-1,962
\frac{3}{4}*π = \tfrac{2}{3}*π + π/12
26,732
\pi/4 + \dfrac{(-1)*\pi}{4} - s = -s
20,561
(h_x - h_k) * (h_x - h_k) = h_k^2 + h_x^2 - 2*h_x*h_k
-29,172
16 = 5 \cdot 2 + 2 \cdot 3
1,424
\pi/3 = -2 \cdot \pi/3 + \pi
27,736
\cos(2.4\cdot \pi\cdot x) = \cos\left(2\cdot \pi\cdot x + 0.4\cdot \pi\cdot x\right)
-22,308
(k + 7\cdot \left(-1\right))\cdot \left((-1) + k\right) = 7 + k^2 - 8\cdot k
21,831
f + 0 + 0 = 0 \Rightarrow f = 0
17,903
100 = 1*23 + 4(-1) + 5 + 6(-1) + 7(-1) + 89
-10,440
-\frac{1}{t^3} \cdot t \cdot \frac13 \cdot 3 = -\frac{t \cdot 3}{t^3 \cdot 3}
17,814
\frac14 \cdot 729 = 3^6/4
3,244
\binom{l}{2} - l = l^2/2 - 3/2\cdot l
32,862
0 = I + B^2 - B\Longrightarrow 0 = I + (B - I) \cdot B
23,585
\mathbb{E}((x - l)^2) = (-l + x)^2
35,587
(2 \cdot (0 + 1))^k = 2^k
16,417
(1 + 2sc) (c - s) = (c + s)^2 (c - s) = \left(c^2 - s^2\right) (c + s)
6,099
\frac{1}{2} + 1/3 + \frac17 + \dfrac{1}{42} = 1
-6,339
\frac{2}{5 \cdot y + 35 \cdot (-1)} = \frac{2}{5 \cdot (7 \cdot (-1) + y)}
-3,208
\sqrt{25*13} + \sqrt{16*13} = \sqrt{325} + \sqrt{208}
9,986
((-1) + 6)\cdot 5^j + (-1) = 6\cdot 5^j + 6\cdot (-1) - 5^j + 5
3,103
\frac{1}{x*z} = \frac{1}{z*x} = z*x = x*z
-1,497
-\dfrac19 \cdot 2 \cdot (-5/7) = \frac{(-1) \cdot 2 \cdot 1/9}{\frac{1}{5} \cdot (-7)}
3,312
\mathbb{E}\left[a + b\times R\right] = \mathbb{E}\left[a\right] + \mathbb{E}\left[b\times R\right] = a + b\times \mathbb{E}\left[R\right]
36,589
4^8 - \dfrac{8!}{2!*2!*2!*2!} = 63016
47,514
-{6 \choose 4} + {11 \choose 4} + {9 \choose 4} = 441
-7,905
\frac{1}{i - 3}(-2 + 4i) = \frac{-3 - i}{-3 - i} \frac{4i - 2}{i - 3}
14,575
0 = h + 4 + 36 + d*4 + 12*a \Rightarrow -40*\dotsm*3 = h + 4*d + a*12
-2,011
-\pi \cdot \frac{23}{12} + \pi \cdot 5/12 = -3/2 \cdot \pi
-4,114
\frac{a^2}{a^3} = \frac{1}{a\cdot a\cdot a}\cdot a^2 = 1/a
-20,175
-7/4*\dfrac{-p*6 + 2}{2 - 6*p} = \frac{14*(-1) + p*42}{8 - p*24}
46,057
20 = 120 + 100 (-1)
46,871
10 \cdot 10 \cdot 10 \cdot 10 = 10^4
11,363
1+7+7+7=22
8,193
h^{-y + z} = \frac{h^z}{h^y}
-18,621
3 q + 4 (-1) = 8 \cdot (2 q + 4) = 16 q + 32
21,600
(a + d)^t = (a + d)^{(-1) + t} \cdot \left(d + a\right)
15,035
x + r_2 = r_1 \Rightarrow r_2^2 = (r_1 - x)^2\cdot 2
15,717
\left(2\cdot \sigma^2\right) \cdot \left(2\cdot \sigma^2\right)\cdot \frac{k}{2} = k\cdot \sigma^4\cdot 2
11,858
2*(1/2 + \dfrac{1}{2}) = 2/2 + \dfrac{1}{2}*2 = 1 + 1 = 2
11,611
\binom{(-1) + l}{(-1) + i} \frac{l}{i} = \binom{l}{i}