id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
31,674 | 20 = 10*((-1) + 3) |
-22,354 | s^2 - s \cdot 5 + 4 = (s + 4(-1)) ((-1) + s) |
-8,548 | \frac68 - 1/12 = \frac{6}{8\cdot 3}\cdot 3 - \frac{1\cdot 2}{12\cdot 2} = \frac{1}{24}\cdot 18 - 2/24 = (18 + 2\cdot \left(-1\right))/24 = 16/24 |
24,795 | 7^2 + 6^2 = 9^2 + 2^2 |
1,345 | 10 + n^2 - 7\cdot n = 2\cdot (-1) + (n + 4\cdot \left(-1\right))\cdot (n + 3\cdot (-1)) |
24,569 | \tan{3A} - \tan{A} = \dfrac{1}{\cos{3A} \cos{A}}\sin(3A - A) = 2\sin{A}/\cos{3A} |
30,711 | (-2 * 2)^3 = (-4)^3 = -64 |
21,122 | a^i*a = a^{1 + i} |
9,377 | -2\cdot y = -y\cdot 2 |
26,299 | \sqrt{M_1}*\sqrt{M_1} = M_1 |
16,532 | -7*4 + 15*2 = 2 |
13,560 | 1/\sec\left(A\right) = \cos(A) |
-30,443 | 8 = 3\cdot 2^2 + X = 12 + X |
3,175 | (-a + x) (-b + x) = ab + x^2 - x*(b + a) |
13,362 | 2^{k + 2} + 8*3^{2*k + 1} = 3^{1 + k*2}*7 + 3^{2*k + 1} + 2^{2 + k} |
-10,778 | \dfrac{35}{20\cdot (-1) + 5\cdot q} = 5/5\cdot \tfrac{1}{4\cdot (-1) + q}\cdot 7 |
31,082 | 1 + \dfrac{1}{1/(1/3\cdot 5) + 1} = 1 + \frac{1}{1 + \frac{1}{1 + 2/3}} |
-10,265 | -\frac{135}{15 \cdot z + 30} = -\frac{9}{z + 2} \cdot 15/15 |
19,907 | (f + a)^2 = f \cdot f + a \cdot a + f \cdot a \cdot 2 |
31,978 | 3/1329227995784915872903807060280344576 = \dfrac{1}{2^{120}} 3 |
8,352 | 8 \cdot 8 + (-1) = 3^2 \cdot 7 |
16,604 | 0 = -\cos(\pi*2) + 1 |
-7,764 | \frac{2\times i - 10}{2 + i\times 2} = \frac{i\times 2 - 10}{2\times i + 2}\times \frac{-2\times i + 2}{2 - 2\times i} |
7,884 | t_2\times t_1\times u_1 = t_1\times t_2\times u_1 |
-13,415 | 6*3 + 8*60/10 = 6*3 + 8*6 = 18 + 8*6 = 18 + 48 = 66 |
-22,424 | 125^{\tfrac{2}{3}} = (125^{\frac13})^2 = 5^2 = 5*5 = 25 |
505 | (a^2 + b^2)^3 = 8^2 = 64\Longrightarrow 4 = a^2 + b^2 |
14,092 | \frac{\sqrt{6}\times 2\times \frac{1}{2}}{8\times 1/2} = \dfrac{\sqrt{6}}{4} |
25,772 | \sin^2(y) - \cos(y)*\left(1 - \cos(y)\right) = \sin^2(y) + \cos^2\left(y\right) - \cos(y) = 1 - \cos(y) |
-19,707 | \frac{54}{7} \cdot 1 = \frac{54}{7} |
-4,773 | -\frac{1}{x + 2\cdot (-1)}\cdot 3 + \dfrac{1}{x + 1}\cdot 5 = \frac{2\cdot x + 13\cdot \left(-1\right)}{2\cdot \left(-1\right) + x^2 - x} |
18,718 | z^{l + \vartheta} = z^\vartheta z^l |
19,031 | 1/\left(D\cdot G\right) = 1/\left(D\cdot G\right) |
-9,090 | 147.9\% = \frac{1}{100}*147.9 |
36,780 | 25=5^2=3^2+4^2 |
-474 | \frac53 \cdot \pi = 95/3 \cdot \pi - 30 \cdot \pi |
39,971 | 0 = \left(-1\right)^1 + 1 |
14,344 | x*K = x*z*x*K = x*K*z*K*x*K |
7,636 | 1 + 3 + 5 + \dotsm + n\cdot 2 + 1 = \left(1 + n\right)^2 |
18,490 | \dfrac{y}{1 + y} = -\dfrac{1}{y + 1} + 1 |
1,262 | 3 + 7a = 2a + 1 + \left(a\cdot 5 + 2\right) |
39,529 | (S \cdot C)^Z \cdot G = C^Z \cdot S^Z \cdot G = C^Z \cdot S \cdot G |
26,558 | y \cdot y \cdot y = i \cdot 3 + 4 \Rightarrow (4 + 3 \cdot i)^{1/3} = y |
-7,336 | \frac{4}{45} = \frac49 \cdot \dfrac{2}{10} |
10,196 | 2^k + \left(-1\right) + (-1) = 2^k + 2(-1) |
22,048 | {h \choose e} = {h + (-1) \choose (-1) + e} + {(-1) + h \choose e} |
3,912 | \left(-(g - \frac12\cdot 9) = 0 \implies 0 = 9/2 - g\right) \implies 9/2 = g |
21,057 | t = (-1) + k rightarrow \left\lfloor{(t + 1)^2/k}\right\rfloor = k > k + \left(-1\right) |
25,624 | \dfrac{\frac{1}{2}}{2}\cdot \left((-1) + 49\right) + \frac{1}{4}\cdot (\binom{49}{2} - \frac{1}{2}\cdot (49 + (-1))) = 300 |
3,356 | \left(q^2 = 3 \cdot (-1) + m^2 - m \cdot 6 \implies (3 \cdot (-1) + m)^2 + 12 \cdot (-1) = q^2\right) \implies (m + q + 3 \cdot (-1)) \cdot (3 \cdot (-1) + m - q) = 12 |
25,403 | (-1 + 13^{1 / 2})/6 = -\frac16 + \frac16 \cdot 13^{1 / 2} |
760 | -75 = 50 + (-5/2)^3*8 |
11,319 | 0 = 3 - h + 4 - h \Rightarrow h = 3.5 |
6,033 | 2 = \frac{2}{3 - \dfrac{2}{2\cdot (-1) + 3}} |
7,224 | y^4 = y^2 - y \cdot y \cdot y = -3 \cdot y + 2 |
22,770 | 3^2 + 3 \times (-1) + \left(-1\right) = 9 + 3 \times (-1) + \left(-1\right) = 0 |
-2,614 | ((-1) + 3 + 5)\cdot \sqrt{10} = 7\cdot \sqrt{10} |
8,356 | -(-a + h) = a - h |
-16,068 | 8*7*6 = \dfrac{8!}{(8 + 3*(-1))!} = 336 |
40,456 | (a + (-1)) \cdot (a + (-1)) + a + (-1) + a = a^2 |
-1,962 | \frac{3}{4}*π = \tfrac{2}{3}*π + π/12 |
26,732 | \pi/4 + \dfrac{(-1)*\pi}{4} - s = -s |
20,561 | (h_x - h_k) * (h_x - h_k) = h_k^2 + h_x^2 - 2*h_x*h_k |
-29,172 | 16 = 5 \cdot 2 + 2 \cdot 3 |
1,424 | \pi/3 = -2 \cdot \pi/3 + \pi |
27,736 | \cos(2.4\cdot \pi\cdot x) = \cos\left(2\cdot \pi\cdot x + 0.4\cdot \pi\cdot x\right) |
-22,308 | (k + 7\cdot \left(-1\right))\cdot \left((-1) + k\right) = 7 + k^2 - 8\cdot k |
21,831 | f + 0 + 0 = 0 \Rightarrow f = 0 |
17,903 | 100 = 1*23 + 4(-1) + 5 + 6(-1) + 7(-1) + 89 |
-10,440 | -\frac{1}{t^3} \cdot t \cdot \frac13 \cdot 3 = -\frac{t \cdot 3}{t^3 \cdot 3} |
17,814 | \frac14 \cdot 729 = 3^6/4 |
3,244 | \binom{l}{2} - l = l^2/2 - 3/2\cdot l |
32,862 | 0 = I + B^2 - B\Longrightarrow 0 = I + (B - I) \cdot B |
23,585 | \mathbb{E}((x - l)^2) = (-l + x)^2 |
35,587 | (2 \cdot (0 + 1))^k = 2^k |
16,417 | (1 + 2sc) (c - s) = (c + s)^2 (c - s) = \left(c^2 - s^2\right) (c + s) |
6,099 | \frac{1}{2} + 1/3 + \frac17 + \dfrac{1}{42} = 1 |
-6,339 | \frac{2}{5 \cdot y + 35 \cdot (-1)} = \frac{2}{5 \cdot (7 \cdot (-1) + y)} |
-3,208 | \sqrt{25*13} + \sqrt{16*13} = \sqrt{325} + \sqrt{208} |
9,986 | ((-1) + 6)\cdot 5^j + (-1) = 6\cdot 5^j + 6\cdot (-1) - 5^j + 5 |
3,103 | \frac{1}{x*z} = \frac{1}{z*x} = z*x = x*z |
-1,497 | -\dfrac19 \cdot 2 \cdot (-5/7) = \frac{(-1) \cdot 2 \cdot 1/9}{\frac{1}{5} \cdot (-7)} |
3,312 | \mathbb{E}\left[a + b\times R\right] = \mathbb{E}\left[a\right] + \mathbb{E}\left[b\times R\right] = a + b\times \mathbb{E}\left[R\right] |
36,589 | 4^8 - \dfrac{8!}{2!*2!*2!*2!} = 63016 |
47,514 | -{6 \choose 4} + {11 \choose 4} + {9 \choose 4} = 441 |
-7,905 | \frac{1}{i - 3}(-2 + 4i) = \frac{-3 - i}{-3 - i} \frac{4i - 2}{i - 3} |
14,575 | 0 = h + 4 + 36 + d*4 + 12*a \Rightarrow -40*\dotsm*3 = h + 4*d + a*12 |
-2,011 | -\pi \cdot \frac{23}{12} + \pi \cdot 5/12 = -3/2 \cdot \pi |
-4,114 | \frac{a^2}{a^3} = \frac{1}{a\cdot a\cdot a}\cdot a^2 = 1/a |
-20,175 | -7/4*\dfrac{-p*6 + 2}{2 - 6*p} = \frac{14*(-1) + p*42}{8 - p*24} |
46,057 | 20 = 120 + 100 (-1) |
46,871 | 10 \cdot 10 \cdot 10 \cdot 10 = 10^4 |
11,363 | 1+7+7+7=22 |
8,193 | h^{-y + z} = \frac{h^z}{h^y} |
-18,621 | 3 q + 4 (-1) = 8 \cdot (2 q + 4) = 16 q + 32 |
21,600 | (a + d)^t = (a + d)^{(-1) + t} \cdot \left(d + a\right) |
15,035 | x + r_2 = r_1 \Rightarrow r_2^2 = (r_1 - x)^2\cdot 2 |
15,717 | \left(2\cdot \sigma^2\right) \cdot \left(2\cdot \sigma^2\right)\cdot \frac{k}{2} = k\cdot \sigma^4\cdot 2 |
11,858 | 2*(1/2 + \dfrac{1}{2}) = 2/2 + \dfrac{1}{2}*2 = 1 + 1 = 2 |
11,611 | \binom{(-1) + l}{(-1) + i} \frac{l}{i} = \binom{l}{i} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.