id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-10,390 | \tfrac{1}{12}12 \dfrac{7 + r}{5r + 20 (-1)} = \frac{12 r + 84}{60 r + 240 (-1)} |
8,609 | \tfrac{1}{k!\cdot (-k + n)!}\cdot n! = \binom{n}{k} |
-3,099 | \sqrt{13}\cdot 3 = \sqrt{13}\cdot ((-1) + 4) |
14,278 | {l \choose j} + {l \choose (-1) + j} = {l + 1 \choose j} |
30,762 | k*3 + 8 (-1) = 3 \left(k + (-1)\right) + 8 (-1) + 3 |
5,527 | \frac{1}{y + 3}(\tfrac{1}{2(-1) + y}40 + 5y + 15) = 5 + \frac{40}{\left(y + 3\right) (2\left(-1\right) + y)} |
8,529 | \tan\left(\operatorname{arccot}(t)\right) = \frac{1}{\cot(\operatorname{arccot}(t))} = \frac{1}{t} |
-20,551 | \frac{a \cdot 24}{-8 \cdot a + 16 \cdot (-1)} = 8/8 \cdot \frac{3 \cdot a}{2 \cdot (-1) - a} |
-4,927 | \frac{7.6}{10^5} = \frac{1}{10^5} 7.6 |
13,921 | x \cdot x = \left(2 \cdot (-1) + x\right) \cdot (2 + x) + 4 |
28,932 | T \cdot (g_2 \cdot x + g_1) = g_1 \cdot T + g_2 \cdot T \cdot x |
-17,520 | 33 = 92 + 59*\left(-1\right) |
-21,641 | -\frac{7}{8} = -7/8 |
22 | Y \setminus B = Y \setminus B \cap Y = B \cup Y \setminus B |
21,587 | \arcsin(1)=\pi/2 |
7,482 | (24\cdot e - 41\cdot s)\cdot 5 = 120\cdot e - 205\cdot s |
12,900 | \dfrac12(\cos(-D + A) - \cos\left(D + A\right)) = \sin{A} \sin{D} |
2,146 | \sin(\frac{\pi}{12}\times 19) = -\cos(\pi/12) |
34,183 | \tan^{-1}(1 + \sqrt{2}) = 3/8 \pi |
-13,032 | 5 + 3 + 10 = 18 |
24,324 | 3 = \frac{18}{3*(1 + 5 + 4*(-1))} |
13,161 | 1 - 1/2 + 1/3 - \frac{1}{4} = 7/12 |
8,204 | (6 \cdot (-1) + t)^2 - 4 \cdot (t^2 - t \cdot 6 + (-1)) = -t^2 \cdot 3 + t \cdot 12 + 40 |
27,056 | 3 \cdot 7 - z = -z + 21 |
-13,454 | (6 + 10 - 9 \cdot 10) \cdot 5 = (6 + 10 + 90 \cdot \left(-1\right)) \cdot 5 = (6 - 80) \cdot 5 = (6 + 80 \cdot (-1)) \cdot 5 = (-74) \cdot 5 = (-74) \cdot 5 = -370 |
-4,202 | a^4/a*110/44 = 110*a^4/(44*a) |
25,684 | {d \choose b} = {d \choose d - b} |
5,465 | \frac{(1 + \left(-1\right) + 1 + 1)!}{(1 + \left(-1\right))! \cdot 1! \cdot 1!} = \frac{2!}{0! \cdot 1! \cdot 1!} = 2! = 2 |
-2,474 | -\sqrt{16\times 3} + \sqrt{25\times 3} = \sqrt{75} - \sqrt{48} |
-488 | -4\cdot π + π\cdot \frac{19}{4} = π\cdot \frac{3}{4} |
11,071 | 4^{578} = 4 \cdot 4\cdot (4^6)^{96} |
39,321 | {-1 \choose m} = ((-1)\cdot (-1 + (-1))\cdot (-1 + 2\cdot (-1))\cdot \dotsm\cdot (-1 - m + 1))/m! = (-1)^m\cdot m!/m! = (-1)^m |
29,899 | 3 \cdot 7 \cdot 17 \cdot 23 \cdot 31 - 2 \cdot 2 \cdot 5 \cdot 11 \cdot 13 \cdot 89 = 1 |
5,503 | x^3 + 0\cdot x^2 + 0\cdot x + 0 = (x + 0)^3 |
-1,689 | -\frac{11}{6}*\pi + \pi/3 = -\frac{3}{2}*\pi |
52,829 | \frac{dy}{dx}=\frac{-12x^2y+4y^3+4y}{4x^3-12xy^2-4x}=\frac{-4x^2y+y^3+y}{x^3-3xy^2-x} |
-2,614 | \sqrt{10}*\left(3 + 5 + (-1)\right) = \sqrt{10}*7 |
20,176 | -g \cdot g = -g\cdot g |
33,988 | 140 - 30 + 50 + 10 \Rightarrow 70 = 60 + 10 |
-5,856 | \frac{4}{(z + 1) \cdot \left(4 + z\right)} = \frac{4}{z^2 + 5 \cdot z + 4} |
20,717 | q^{k + 1} > q^{k + 1} + (-1) = (q^k + \left(-1\right))^q > q^{(k + \left(-1\right))\cdot q} |
-17,517 | 52 + 22 (-1) = 30 |
-19,615 | \dfrac{5}{6} \cdot 8 = 40/6 |
29,282 | y \cdot y^{k + (-1)} = y^k |
-5,021 | 10^{-5 + 6}\cdot 18.0 = 18\cdot 10^1 |
8,452 | 3d_1 d_2 = (d_2 + d_1)^2 - d_2^2 - d_2 d_1 + d_1^2 |
19,769 | 123 = 3\cdot 10^0 + 2\cdot 10^1 + 10^2 |
-30,254 | \frac{1}{y + 4}\cdot \left(y^2 + 16\cdot \left(-1\right)\right) = \frac{1}{y + 4}\cdot \left(y + 4\right)\cdot (y + 4\cdot \left(-1\right)) = y + 4\cdot \left(-1\right) |
44,758 | (500\cdot3)\cdot3=500\cdot3^2 |
-20,886 | \frac{1}{c \cdot (-14)} \cdot \left(c \cdot 7 + 63\right) = \frac17 \cdot 7 \cdot \frac{1}{c \cdot (-2)} \cdot (c + 9) |
-22,932 | \frac{10*13}{13*9} = \dfrac{130}{117} |
22,300 | \dfrac{5!}{\left(5 + 2 \cdot (-1)\right)!} \cdot \frac{10!}{(10 + 3 \cdot (-1))!} \cdot 7! \cdot \tfrac{1}{(7 + 2 \cdot (-1))!} \cdot 3! = 720 \cdot 42 \cdot 20 \cdot 6 = 3628800 |
-19,260 | \dfrac{1}{2} = H_s/(81*\pi)*81*\pi = H_s |
4,408 | \frac{2*x + 3}{x + 2} = \frac{1}{x + 2}*\left(x + 2 + x + 1\right) = 1 + \frac{x + 1}{x + 2} |
-9,908 | 0.01 \left(-35\right) = -35/100 = -0.35 |
-4,275 | \frac{p \cdot 80}{p^3 \cdot 8} = \frac{1}{p^3} \cdot p \cdot \dfrac{80}{8} |
30,675 | 34358689792 = (2^{15} - 1)*2^{20} |
5,594 | 5 = \mathbb{Var}(C) = \mathbb{E}(C^2) - \mathbb{E}(C) * \mathbb{E}(C) = \mathbb{E}(C^2) + 4*(-1) |
30,613 | 2^{m + 1} + 2 \cdot \left(-1\right) = 2^1 \cdot 2^m + 2 \cdot \left(-1\right) = 2 \cdot (2^m + (-1)) |
20,568 | \left(\frac12\cdot (1 + 1) + \frac{1}{1}\cdot 2 + 2/1\right)/3 = \frac{5}{3} |
112 | \tfrac{3!}{(3 + 2(-1))!\cdot 2!} = 3 |
770 | x + 2*m*(2*m + b) = x + m * m*4 + 2*m*b |
-23,120 | \frac18\cdot 7 = 7\cdot 1/4/2 |
17,670 | w\cdot (u + x) = w\cdot u + x\cdot w |
26,556 | z = i\Longrightarrow e^z = e^i |
-20,606 | \dfrac{y \cdot 9 + 27 \cdot (-1)}{y \cdot 9 + 36 \cdot \left(-1\right)} = \frac{1}{4 \cdot (-1) + y} \cdot \left(y + 3 \cdot (-1)\right) \cdot 9/9 |
9,356 | \cos(\alpha)*\cos\left(\theta\right) - \sin(\alpha)*\sin(\theta) = \cos(\alpha + \theta) |
31,730 | 1 + p + 1 = p + 2 |
42,730 | 11 = 55 - (-1) + 45 |
14,251 | 144^{\sin^2\left(y\right)} = (12^2)^{\sin^2(y)} = 12^{\sin^2(y)} \cdot 12^{\sin^2(y)} |
-29,187 | -5 = 5\left(-1\right) + 3*0 |
635 | (-t + r) \cdot (t + r) \cdot (r \cdot r + t \cdot t) = -t^4 + r^4 |
-9,428 | q \cdot 3 \cdot 3 \cdot 11 + 11 = q \cdot 99 + 11 |
26,869 | -\sin^2(y)\cdot 2 + 1 = \cos(y\cdot 2) \Rightarrow -\cos(2y) + 1 = 2\sin^2(y) |
19,978 | 6 = 15 + 3\cdot \left(-1\right) + 6\cdot (-1) |
33,248 | \left(-1\right)^{\dfrac{6}{2}} = (-1)^2 \cdot (-1) |
-7,594 | \frac{1}{5 - i*4}\left(-25 + 20 i\right) \frac{5 + 4i}{i*4 + 5} = \frac{1}{-4i + 5}(20 i - 25) |
16,901 | \cos(x) \times \sin(x) = \frac{1}{2} \times \sin(x \times 2) |
340 | \frac{X^9 + (-1)}{X + (-1)} = 1 + X + \dotsm + X^8 = \mathbb{P}(X) |
3,607 | \dfrac{1}{1 + \dfrac{1}{y^m}\cdot 7} = \frac{y^m}{y^m + 7} |
3,328 | (z \cdot x) \cdot (z \cdot x) = x^2 \cdot z^2 |
5,792 | \Sigma_j\times y^j = y\times y^{(-1) + j}\times \Sigma_j |
18,540 | 3^{2 n} + (-1) = 9^n + (-1) = (8 + 1)^n + (-1) |
6,744 | 9 Z + Z + 5 (-1) = 2 \Rightarrow Z = \frac{7}{10} |
38,335 | (5 + f)^2 + 25 \left(-1\right) = 25 + 2*5f + f^2 + 25 (-1) = 2*5f + f^2 |
-29,140 | 4\cdot \left(-2\right) - 3 = -11 |
-1,087 | \frac{1}{7/6 \cdot 9} = \frac{1}{9} \cdot 6 / 7 |
-6,055 | \frac{c}{(10 \cdot (-1) + c) \cdot \left(c + 10\right)} = \frac{c}{100 \cdot (-1) + c \cdot c} |
15,317 | 1050 = 10!\cdot 5/\left(4!\cdot 6!\right) |
17,281 | -\frac14\cdot 9 = -\frac{1}{4}\cdot 15 - -3/2 |
12,418 | (n - m) \cdot \alpha = \alpha \cdot n - m \cdot \alpha |
-30,376 | \frac{1}{10000} 8.235 = 8.235*0.0001 |
-22,201 | 72 \cdot (-1) + t^2 - t = (t + 9 \cdot (-1)) \cdot (8 + t) |
-4,135 | 72/108*\dfrac{y^2}{y^5} = 2*36/(3*36)*\tfrac{1}{y^5}*y * y |
29,679 | \frac{\sqrt{7}}{2} \cdot i + 1/2 = \frac{1}{2} \cdot (1 + \sqrt{-7}) |
11,368 | \sin\left(\beta\right)*\cos(x) + \sin(x)*\cos(\beta) = \sin(x + \beta) |
-10,344 | -\frac{1}{a \cdot 10 + 10} \cdot \left(15 \cdot a + 50\right) = 5/5 \cdot (-\dfrac{1}{2 + 2 \cdot a} \cdot (3 \cdot a + 10)) |
13,577 | 1/7 = \frac{1}{1000} \times (1 - 1/7) + 0.142 |
15,884 | \tan(π/2 - a) = \frac{1}{\tan(a)} |
-8,015 | \frac{1}{-2}\cdot (-4\cdot i - 4) = -\tfrac{4}{-2} - 4\cdot i/\left(-2\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.