id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,641 | \frac{2 \cdot x + 13}{20 + x \cdot x + 9 \cdot x} = \frac{1}{x + 4} \cdot 5 - \frac{1}{5 + x} \cdot 3 |
51,623 | 2*7 + 6 = 20 |
26,913 | 1 - \dfrac{1}{y*2 + 1}*4 = \dfrac{1}{1 + 2*y}*(2*y + 3*(-1)) |
5,040 | -k! + (1 + k)! = kk! |
-5,233 | 65.1 \cdot 10^3 = 65.1 \cdot 10^{-2 + 5} |
7,495 | a - e + x = a - -x + e |
34,632 | \left(-1\right)^p = \cos{\pi\cdot p} + i\cdot \sin{\pi\cdot p} \approx 1 + i\cdot \pi\cdot p |
-8,825 | \pi\cdot 96 = 64\cdot \pi + \pi\cdot 16 + 16\cdot \pi |
28,732 | \frac{(-1) + s^2}{s + (-1)} = s + 1 |
18,514 | \sin{a} \cdot \cos{h} + \sin{h} \cdot \cos{a} = \sin(h + a) |
-17,556 | 47 = 7\left(-1\right) + 54 |
28,365 | (a - b)^2 = (a - b) \cdot (a - b) = a \cdot a - 2 \cdot a \cdot b + b^2 |
-28,758 | 1/3 - \tfrac{4}{y*3 + 6} = 1/3 - \frac{4*\frac13}{y + 2} |
-27,691 | \frac{d}{dx} (-5\cdot \sin\left(x\right)) = -\cos(x)\cdot 5 |
-6,180 | \frac{1}{(y + 3\cdot (-1))\cdot (5 + y)}\cdot (5\cdot (3\cdot \left(-1\right) + y) - 3\cdot (y + 5) + 4) = \frac{1}{\left(y + 5\right)\cdot \left(y + 3\cdot \left(-1\right)\right)}\cdot (-15 + y\cdot 5) - \frac{1}{(y + 3\cdot (-1))\cdot (5 + y)}\cdot (15 + y\cdot 3) + \frac{4}{(y + 5)\cdot (y + 3\cdot (-1))} |
12,589 | \frac26 = 1/6 + 1/6 |
1,458 | 2^x - 2^{2 \cdot (-1) + x} \cdot \left((-1) + x\right) + 2^{x + 4 \cdot (-1)} \cdot (2 \cdot (-1) + x) \cdot (3 \cdot (-1) + x)/2! - \dotsm = 1 + x |
8,111 | {n \choose x + 1} + {n \choose x} = {1 + n \choose x + 1} |
-10,761 | \frac{1}{2 + r}4*\frac55 = \tfrac{20}{10 + 5r} |
17,691 | 1 + x + x \cdot x + \dotsm = e^x |
37,586 | 150 = 3 \cdot 5^2 \cdot 2 |
37,583 | l = l^2/l |
20,989 | 5\times n + n + n\times 3 = 9\times n |
28,919 | \frac{1}{x + (-1)} = \frac{1}{x \cdot (-\frac{1}{x} + 1)} |
-5,657 | \frac{2}{n^2 - 12 \cdot n + 32} = \frac{2}{\left(8 \cdot (-1) + n\right) \cdot (4 \cdot (-1) + n)} |
10,648 | \left(\frac{1 + 2\times x}{2 + x} = x\Longrightarrow x \times x = 1\right)\Longrightarrow x = 1 |
17,266 | \frac{1}{c} \cdot b \cdot h = h \cdot b/c |
49,325 | \frac{\partial}{\partial x} \sum_{n=0}^\infty x^n = \sum_{n=0}^\infty \frac{\partial}{\partial x} x^n = \sum_{n=0}^\infty n\cdot x^{n + (-1)} |
-10,456 | \frac22 \cdot (-\tfrac{1}{5 \cdot q^2} \cdot (q + 7 \cdot (-1))) = -\frac{1}{q^2 \cdot 10} \cdot \left(2 \cdot q + 14 \cdot (-1)\right) |
-12,519 | 40 = 90 + 50\cdot \left(-1\right) |
-29,570 | -y = -y^2/y |
-29,347 | (-b + h) (h + b) = -b b + h^2 |
26,939 | y^2 - 4y = \left(2(-1) + y\right) \cdot \left(2(-1) + y\right) + 4(-1) |
-20,573 | \dfrac{1}{-3}\cdot (x + 1)\cdot 8/8 = (x\cdot 8 + 8)/\left(-24\right) |
6,472 | f*h*(f*h)^i = f*h*(f*h)^i |
-3,318 | \sqrt{3} + \sqrt{3} \cdot \sqrt{9} = \sqrt{3} + \sqrt{3} \cdot 3 |
4,769 | 2 \cdot 2^k = 2^{k+1} |
-26,649 | -25*q^2 + s * s*4 = (s*2)^2 - (5*q)^2 |
-11,528 | -37 - 5\cdot i = -5\cdot i - 12 + 25\cdot \left(-1\right) |
-4,241 | 30/18\cdot \dfrac{n^2}{n^2} = \frac{1}{n^2\cdot 18}\cdot n^2\cdot 30 |
2,403 | a^2 + 4 + a \cdot 4 = (2 + a) \cdot (2 + a) |
24,489 | 20 + 6 \cdot (-1) = 14 |
-10,658 | 21/(3\times r) = 7/r\times 3/3 |
7,552 | d/h\Longrightarrow d/h |
12,955 | x^4-16=(x-2)(x+2)(x^2+4) |
-20,054 | \dfrac{1}{(-1) + x} \cdot (2 \cdot x + 9) \cdot \frac{9}{9} = \frac{81 + 18 \cdot x}{9 \cdot x + 9 \cdot \left(-1\right)} |
22,770 | 3 \cdot 3 + 3\cdot (-1) + (-1) = 9 + 3\cdot \left(-1\right) + (-1) = 0 |
17,183 | \frac{(2\cdot m)!}{2^m\cdot m!} = 3\cdot 5\cdot \dotsm\cdot (m\cdot 2 + (-1)) |
21,565 | \left( 11, 60, 61\right) = ( -5^2 + 6^2, 60, 6^2 + 5 \cdot 5) |
20,333 | 1/3 = \frac{1}{72}*24 |
-5,899 | \frac{1}{4\times (n + 6\times (-1))}\times 2 = \frac{2}{4\times n + 24\times (-1)} |
11,630 | \sum_{m=1}^h \left(m^2 + (-1)\right) = \sum_{m=1}^h (m + (-1)) (1 + m) |
4,817 | b = a \implies b^4 = a^4 |
13,342 | A^n \times C = A^n \times C |
27,232 | h\cdot d\cdot g = d\cdot h\cdot g |
-2,916 | \sqrt{11} = (4 + 5 \cdot (-1) + 2) \cdot \sqrt{11} |
-23,408 | \tfrac35 = \dfrac34\times \frac{4}{5} |
30,254 | 5 \cdot \left(-\sqrt{1} + \sqrt{2}\right) = 5 \cdot (\sqrt{2} + \left(-1\right)) |
16,614 | \frac{1}{k}*(k + 2) = \frac1k*(k + 1)*\frac{1}{k + 1}*\left(k + 2\right) |
-20,639 | \frac{1}{4} 1 = \frac{1}{12 (-1) - r \cdot 4} \left(-r + 3 (-1)\right) |
19,135 | 0 = Z + 2x^{Z + 2} = Z + 2x^2 x^Z |
24,145 | a + b = -8 rightarrow -2 = -b + a |
-20,709 | -\dfrac65 \cdot \frac{9 \cdot s + 4 \cdot (-1)}{s \cdot 9 + 4 \cdot (-1)} = \frac{-54 \cdot s + 24}{s \cdot 45 + 20 \cdot \left(-1\right)} |
-12,032 | 5/8 = t/(20*\pi)*20*\pi = t |
-22,222 | (y + 4)\cdot \left(y + 5\right) = 20 + y^2 + 9\cdot y |
-28,178 | \frac{\text{d}}{\text{d}y} \csc{y} = -\cot{y}\cdot \csc{y} |
8,072 | (|z_1| + 1) |z_2| = |z_1| (|z_2| + 1) \implies |z_1| = |z_2| |
23,794 | (-1)^{2 + k} = (-1)^k |
36,805 | -15 = 3 \cdot (-5) |
-6,341 | \dfrac{4}{y \cdot y - 7 \cdot y + 30 \cdot (-1)} = \frac{4}{(10 \cdot (-1) + y) \cdot (y + 3)} |
8,891 | z^2 + 5*z + 6 = \left(z + 3\right) * \left(z + 3\right) - z + 3 |
-22,799 | \frac{22}{99} = \dfrac{2*11}{9*11} |
18,842 | x + 9 \cdot (-1) = \left(\sqrt{x} + 3 \cdot (-1)\right) \cdot (\sqrt{x} + 3) |
12,524 | 3240 = 3\cdot 3\cdot 3\cdot {10 \choose 7} |
-940 | -\dfrac{1}{4}*7 = -7/4 |
24,511 | \sin{\frac37 \cdot \pi} = \sin{4 \cdot \pi/7} |
19,978 | 6 \cdot (-1) + 15 + 3 \cdot (-1) = 6 |
-7,109 | 1/22 = \frac{3}{12} \cdot 2/11 |
-4,423 | \frac{3*x + 9}{5*(-1) + x^2 + x*4} = \tfrac{2}{(-1) + x} + \frac{1}{5 + x} |
12,510 | \left(\frac13 \cdot 2\right)^2 = \frac{4}{9} |
-20,943 | \left(30\cdot x + 40\right)/(40\cdot x) = 5/5\cdot \frac{6\cdot x + 8}{8\cdot x} |
26,406 | 3/5*2/7 = \frac{6}{35} |
25,008 | (5^{1 / 2} + 1)\cdot \left(5^{\frac{1}{2}} + (-1)\right) = 4 |
-593 | -\pi\cdot 4 + \pi\cdot \frac{35}{6} = \pi\cdot \frac{11}{6} |
-7,528 | c^2 - y^2 = \left(c + y\right) \cdot (c - y) |
-22,316 | (n + 3) (n + 8) = 24 + n^2 + 11 n |
-2,733 | 96^{1/2} - 54^{1/2} + 6^{1/2} = \left(16*6\right)^{1/2} - (9*6)^{1/2} + 6^{1/2} |
2,621 | 10 \cdot 10^2 - 5^3 = (10 + 5\cdot (-1))\cdot (5\cdot (-1) + 10)\cdot (2^2\cdot 5 + 2\cdot 5 + 5) |
28,611 | (x^6)^{1/2} = |(x^6)^{\frac12}| = |x^3| |
35,005 | \frac{\partial}{\partial x} (f \cdot h) = h \cdot \frac{\mathrm{d}f}{\mathrm{d}x} |
39,971 | 1 + \left(-1\right)^1 = 0 |
5,875 | j = e^{j \theta} = \cos{\theta} + j \sin{\theta} |
-20,004 | \frac{z*72}{40 (-1) - 56 z} = 8/8 \frac{z*9}{-7z + 5(-1)}1 |
18,944 | s^2 + 2\cdot s + 4\cdot \left(-1\right) = 0 rightarrow -1 \pm \sqrt{5} = s |
14,251 | 144^{\sin^2{x}} = \left(12^2\right)^{\sin^2{x}} = 12^{\sin^2{x}} \cdot 12^{\sin^2{x}} |
21,757 | y \cdot y = 0 + y \cdot y + y\cdot 0 |
7,577 | \frac{2*z^2 + z}{z^2 + 1} = 1 + \frac{z^2 + z + (-1)}{z * z + 1} = 1 + \frac{1}{2*(z * z + 1)}*(2*z * z + 2*z + 2*(-1)) |
36,869 | 198=202-4 |
3,763 | 2/7 = \frac17\cdot 3\cdot \frac{4}{6} |
4,420 | -\int_1^0 {1*2 z}\,dz = \int\limits_0^1 {1*2 z}\,dz |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.