id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
7,316 | \frac{1}{B + 1} \cdot B = \frac{B + 1 + (-1)}{B + 1} = 1 - \frac{1}{B + 1} |
-11,164 | \left(y + 6\times \left(-1\right)\right)^2 + d = (y + 6\times (-1))\times (y + 6\times (-1)) + d = y^2 - 12\times y + 36 + d |
5,348 | \left(\dfrac{r\cdot \left(r + (-1)\right)}{r\cdot (1 + r)} = \frac{1}{2} \Rightarrow r + 1 = 2\cdot (-1) + r\cdot 2\right) \Rightarrow 3 = r |
-7,891 | \frac{1}{(-2)^2 - (-2*i) * (-2*i)}*\left(-i*8 - 8\right)*(-2 + 2*i) = \tfrac{(-8*i - 8)*(i*2 - 2)}{(-i*2 - 2)*(i*2 - 2)} |
11,686 | Y\cdot B + E\cdot Y = Y\cdot \left(B + E\right) |
7,841 | x = |x| \times e^{\pi \times i} = |x| \times (\cos(\pi) + i \times \sin(\pi)) |
19,172 | y = \frac{x}{4(-1) + x^2}\Longrightarrow -y\cdot 4 + x^2 y - x = 0 |
31,997 | x + f + h = f + h + x |
14,757 | 2*\left(48 + 1 + 4 + 14\right) = 134 |
16,984 | \gamma^{f + d} = \gamma^f \cdot \gamma^d |
-30,579 | 10*(7*(-1) + x*4) = 40*x + 70*\left(-1\right) |
20,810 | (z + 1)^{2 \cdot n} = ((z + 1)^n)^2 |
26,829 | r \cdot \alpha \cdot \beta = r \cdot \alpha \cdot \beta |
-1,843 | \pi \frac135 - \frac{\pi}{3} = 4/3 \pi |
224 | |C \cap X| = 7 rightarrow C = X |
11,037 | (-1) \cdot a \cdot 0 + a \cdot 0 + a \cdot 0 = a \cdot 0 - a \cdot 0 |
36,022 | -\operatorname{atan}(1/4) + \operatorname{atan}(\tan{π}) = \operatorname{atan}\left(\frac{-\frac{1}{4} + \tan{π}}{1 + \tan{π}/4}\right) |
6,143 | h_2^3 - h_1 * h_1 * h_1 = (h_2^2 + h_1*h_2 + h_1 * h_1)*(-h_1 + h_2) |
-4,807 | 28.5 \cdot 10^5 = 10^{1 + 4} \cdot 28.5 |
24,342 | \int_{0}^{\frac{\pi}{2}}{e^{x}\sin(x)}dx=e^\frac{\pi}{2}+1+\int_0^\frac{\pi}{2}e^x\cos(x)dx=e^\frac{\pi}{2}+1-\int_0^\frac{\pi}{2}e^x\sin(x)dx |
74 | y = w \implies w = y |
20,408 | (a^2 + f^2) \cdot (g^2 + h^2) = (a \cdot g + f \cdot h)^2 + (a \cdot h - f \cdot g)^2 = (a \cdot g - f \cdot h)^2 + \left(a \cdot h + f \cdot g\right)^2 |
15,934 | b^4 + a^4 = (-\sqrt{2}*b*a + a * a + b^2)*(a^2 + b^2 + a*b*\sqrt{2}) |
-538 | (e^{\frac{2i\pi}{3}})^{19} = e^{19 i\pi\cdot 2/3} |
4,730 | -c/h + g/b = (gh - bc)/(bh) |
7,965 | |S| = \frac{|S|*4}{4} |
36,032 | \cos^3{\theta}\cdot 4 - 3\cdot \cos{\theta} = \cos{\theta\cdot 3} |
23,284 | a/x + f/d = \frac{1}{x\times d}\times (a\times d + x\times f) \neq a\times d + x\times f |
-2,145 | \pi*29/12 = \pi/2 + \pi*23/12 |
-30,392 | 3 = \frac{3}{2} \cdot 2^2 + Y = 6 + Y |
39,187 | \cos(\dfrac{\pi}{4}) = \frac12 \cdot \sqrt{2} |
8,925 | z^3 + 2 = z^3 + (-1) = (z + (-1)) \cdot (z + (-1))^2 |
11,592 | 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = (-1) + 11^2 |
13,362 | 3^{2 \cdot i + 1} \cdot 7 + 3^{i \cdot 2 + 1} + 2^{i + 2} = 2^{2 + i} + 8 \cdot 3^{i \cdot 2 + 1} |
557 | \cot(\theta) = 1/\tan(\theta) = \frac{\cos(\theta)}{\sin\left(\theta\right)} |
-1,381 | -\dfrac15 \cdot (-\frac{9}{2}) = \frac{(-1) \cdot \frac{1}{5}}{1/9 \cdot (-2)} |
4,918 | \binom{12}{3} = 11 \cdot 10 \cdot 12/3! |
3,291 | \left(\frac{2zx}{x^2 + z^2} = -1\Longrightarrow 0 = \left(z + x\right)^2\right)\Longrightarrow x = -z |
-24,820 | 89\cdot 4 = 356 |
-1,507 | \frac{4 \cdot \frac{1}{3}}{\frac15 \cdot 9} = 5/9 \cdot 4/3 |
-8,550 | -16/(-2) = 8 |
-13,924 | \frac{30}{9 + 4*\left(-1\right)} = \frac{30}{5} = 30/5 = 6 |
-3,850 | \frac{72\cdot t^5}{t^3\cdot 132}\cdot 1 = \frac{72}{132}\cdot \dfrac{t^5}{t^3} |
27,019 | b^2 + 1 = d\cdot c \Rightarrow c = \frac1d\cdot (b^2 + 1) |
14,842 | x^c*x^g = x^{g + c} |
33,994 | 11\cdot (-1) + \left(-14\right) = -25 |
9,582 | \frac{\partial}{\partial x} \left(vx\right) = \frac{\partial}{\partial x} (vx) + x\frac{\mathrm{d}v}{\mathrm{d}x} |
46,722 | 415 = 5 \times 83 |
32,192 | π = 3\times \tan^{-1}(\sqrt{3}) |
13,109 | \frac{194}{2^{10}} = -\frac{1}{2^{10}}\times 846 + \frac{520}{2^{10}} + \frac{520}{2^{10}} |
-21,598 | \cos{-π \cdot \frac13 \cdot 5} = 0.5 |
28,274 | {i + j \choose i} = (i + j)!/\left(i!\cdot j!\right) |
23,301 | 4/z = z\times 2 \Rightarrow 4 = 2\times z^2 |
27,780 | \frac{1}{2^{15}} \cdot {14 \choose 9} = 1001/16384 |
36,777 | \int \tfrac{18}{y^4}\,dy = 18*\dfrac{1}{y^3*(-4 + 1)} + A = -\frac{6}{y^3} + A |
3,402 | \sin{y} = \sin(y + \pi*26) |
-20,250 | -5/(-5) \cdot (-\frac11 \cdot 2) = \frac{1}{-5} \cdot 10 |
15,880 | f_e\cdot f_x = f_x\cdot f_e |
23,142 | \tfrac{1}{5} \cdot 720 = 144 |
21,428 | \sin(\frac{c}{3^n})*3^n = \frac{\sin\left(\dfrac{c}{3^n}\right)}{\frac{1}{3^n}} |
-17,381 | \frac{1}{100} \cdot 64.9 = 0.649 |
15,418 | \frac{1}{(1 - u)^{\dfrac{1}{2} \cdot 3}} \cdot \left(1 - u\right) = \frac{1}{(1 - u)^{\frac{1}{2}}} |
24,543 | B \cdot A^2 \cdot B = A \cdot A \cdot B^2 |
1,110 | r = \frac{1}{6}\cdot 5\cdot (1 - r) + \frac16\cdot 0 \Rightarrow 5/11 = r |
-20,631 | \frac{x}{15 \cdot x} \cdot 20 = \dfrac{x \cdot 5}{x \cdot 5} \cdot 4/3 |
20,467 | a\cdot \left(-b\right) = -a\cdot b |
-11,951 | \frac{4}{9} = x/\left(12 \pi\right)*12 \pi = x |
5,022 | 3 \cdot (3z + 4(-1)) - z \cdot 8 + 9(-1) = z + 21 (-1) |
29,118 | \sin{z} = \sin(2 \cdot \pi + z) |
49,068 | 16\cdot 4 = 4\cdot 2^4=64 |
22,895 | 70\% y*90\% = y*63\% |
-3,409 | 2\sqrt{11} = (5 + 4(-1) + 1) \sqrt{11} |
8,125 | (-c)^{1 / 2}\cdot (-b)^{\tfrac{1}{2}} = i\cdot c^{1 / 2}\cdot i\cdot b^{\frac{1}{2}} = -(c\cdot b)^{\frac{1}{2}} |
-7,657 | \dfrac{1}{29} \cdot (-20 - 95 \cdot i + 8 \cdot i + 38 \cdot (-1)) = \dfrac{1}{29} \cdot \left(-58 - 87 \cdot i\right) = -2 - 3 \cdot i |
-2,812 | (2\times (-1) + 1 + 3)\times 13^{1/2} = 13^{1/2}\times 2 |
12,253 | \frac23 \cdot \frac{1}{3} \cdot 2/3 = 4/27 |
29,321 | -i^2 \cdot i = -i \cdot i\cdot i = i = i |
11,877 | Z \times S = x \implies x = S \times Z |
24,112 | 4\cdot z^2 + 4\cdot z + 4 = (z^2 + z + 1)\cdot 4 |
14,902 | \cos\left(\frac{3\pi}{2}1\right) = 0 |
31,506 | (x + (-1))/(2*x) = \frac{1}{2}*(1 - \frac{1}{x}) = \tfrac{1}{2} - 1/(2*x) |
28,832 | 2/8 + 3/8 = \dfrac58 |
1,396 | a*3 = 3*a |
9,621 | (1 + y) \left(y + \left(-1\right)\right) = y^2 + (-1) |
-19,997 | -9/2\cdot \frac{6\cdot t + 8}{6\cdot t + 8} = \tfrac{1}{t\cdot 12 + 16}\cdot (72\cdot (-1) - t\cdot 54) |
17,989 | x + \frac14 + 5/8 + 2(-1) = 1 \Rightarrow x = \dfrac{1}{8} |
28,124 | \sin(B) \cos(B)*2 = \sin(2B) |
-25,787 | 7/20 = 7 \cdot 10^{-1}/2 |
2,750 | f*x = -f*\left(-x\right) |
-7,812 | \dfrac{3 \cdot i - 7}{i \cdot 2 + 5} \cdot \dfrac{5 - i \cdot 2}{5 - i \cdot 2} = \frac{1}{2 \cdot i + 5} \cdot (3 \cdot i - 7) |
3,044 | \frac{{1 \choose 1}}{{11 \choose 2}} \cdot {10 \choose 1} = 2/11 |
33,466 | \frac{1}{k!}k^2 = \frac{1}{(k + (-1))!} + \frac{1}{(2(-1) + k)!} |
10,949 | 2\cdot m + (-1) = 50 + m - 51 - m |
25,116 | (f_1 + f_2)^2 = f_1^2 + f_1\cdot f_2\cdot 2 + f_2^2 |
-2,434 | 2^{\frac{1}{2}} \cdot 4 = 2^{1 / 2} \cdot (3 \cdot \left(-1\right) + 2 + 5) |
21,850 | (-\cos{2\cdot z} + 1)/2 = \sin^2{z} |
3,014 | -\frac{1}{x^2 \cdot 4} + 1 = (1 - 1/(2 x)) (\frac{1}{2 x} + 1) |
47,289 | 5 + 6 + 1 + 5 + 10 = 27 |
19,354 | \tfrac{19}{216} = \frac{1}{6^3}(3^3 - 2 \cdot 2^2) |
-17,564 | 45 + 7 \cdot \left(-1\right) = 38 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.