id
int64
-30,985
55.9k
text
stringlengths
5
437k
7,316
\frac{1}{B + 1} \cdot B = \frac{B + 1 + (-1)}{B + 1} = 1 - \frac{1}{B + 1}
-11,164
\left(y + 6\times \left(-1\right)\right)^2 + d = (y + 6\times (-1))\times (y + 6\times (-1)) + d = y^2 - 12\times y + 36 + d
5,348
\left(\dfrac{r\cdot \left(r + (-1)\right)}{r\cdot (1 + r)} = \frac{1}{2} \Rightarrow r + 1 = 2\cdot (-1) + r\cdot 2\right) \Rightarrow 3 = r
-7,891
\frac{1}{(-2)^2 - (-2*i) * (-2*i)}*\left(-i*8 - 8\right)*(-2 + 2*i) = \tfrac{(-8*i - 8)*(i*2 - 2)}{(-i*2 - 2)*(i*2 - 2)}
11,686
Y\cdot B + E\cdot Y = Y\cdot \left(B + E\right)
7,841
x = |x| \times e^{\pi \times i} = |x| \times (\cos(\pi) + i \times \sin(\pi))
19,172
y = \frac{x}{4(-1) + x^2}\Longrightarrow -y\cdot 4 + x^2 y - x = 0
31,997
x + f + h = f + h + x
14,757
2*\left(48 + 1 + 4 + 14\right) = 134
16,984
\gamma^{f + d} = \gamma^f \cdot \gamma^d
-30,579
10*(7*(-1) + x*4) = 40*x + 70*\left(-1\right)
20,810
(z + 1)^{2 \cdot n} = ((z + 1)^n)^2
26,829
r \cdot \alpha \cdot \beta = r \cdot \alpha \cdot \beta
-1,843
\pi \frac135 - \frac{\pi}{3} = 4/3 \pi
224
|C \cap X| = 7 rightarrow C = X
11,037
(-1) \cdot a \cdot 0 + a \cdot 0 + a \cdot 0 = a \cdot 0 - a \cdot 0
36,022
-\operatorname{atan}(1/4) + \operatorname{atan}(\tan{π}) = \operatorname{atan}\left(\frac{-\frac{1}{4} + \tan{π}}{1 + \tan{π}/4}\right)
6,143
h_2^3 - h_1 * h_1 * h_1 = (h_2^2 + h_1*h_2 + h_1 * h_1)*(-h_1 + h_2)
-4,807
28.5 \cdot 10^5 = 10^{1 + 4} \cdot 28.5
24,342
\int_{0}^{\frac{\pi}{2}}{e^{x}\sin(x)}dx=e^\frac{\pi}{2}+1+\int_0^\frac{\pi}{2}e^x\cos(x)dx=e^\frac{\pi}{2}+1-\int_0^\frac{\pi}{2}e^x\sin(x)dx
74
y = w \implies w = y
20,408
(a^2 + f^2) \cdot (g^2 + h^2) = (a \cdot g + f \cdot h)^2 + (a \cdot h - f \cdot g)^2 = (a \cdot g - f \cdot h)^2 + \left(a \cdot h + f \cdot g\right)^2
15,934
b^4 + a^4 = (-\sqrt{2}*b*a + a * a + b^2)*(a^2 + b^2 + a*b*\sqrt{2})
-538
(e^{\frac{2i\pi}{3}})^{19} = e^{19 i\pi\cdot 2/3}
4,730
-c/h + g/b = (gh - bc)/(bh)
7,965
|S| = \frac{|S|*4}{4}
36,032
\cos^3{\theta}\cdot 4 - 3\cdot \cos{\theta} = \cos{\theta\cdot 3}
23,284
a/x + f/d = \frac{1}{x\times d}\times (a\times d + x\times f) \neq a\times d + x\times f
-2,145
\pi*29/12 = \pi/2 + \pi*23/12
-30,392
3 = \frac{3}{2} \cdot 2^2 + Y = 6 + Y
39,187
\cos(\dfrac{\pi}{4}) = \frac12 \cdot \sqrt{2}
8,925
z^3 + 2 = z^3 + (-1) = (z + (-1)) \cdot (z + (-1))^2
11,592
2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = (-1) + 11^2
13,362
3^{2 \cdot i + 1} \cdot 7 + 3^{i \cdot 2 + 1} + 2^{i + 2} = 2^{2 + i} + 8 \cdot 3^{i \cdot 2 + 1}
557
\cot(\theta) = 1/\tan(\theta) = \frac{\cos(\theta)}{\sin\left(\theta\right)}
-1,381
-\dfrac15 \cdot (-\frac{9}{2}) = \frac{(-1) \cdot \frac{1}{5}}{1/9 \cdot (-2)}
4,918
\binom{12}{3} = 11 \cdot 10 \cdot 12/3!
3,291
\left(\frac{2zx}{x^2 + z^2} = -1\Longrightarrow 0 = \left(z + x\right)^2\right)\Longrightarrow x = -z
-24,820
89\cdot 4 = 356
-1,507
\frac{4 \cdot \frac{1}{3}}{\frac15 \cdot 9} = 5/9 \cdot 4/3
-8,550
-16/(-2) = 8
-13,924
\frac{30}{9 + 4*\left(-1\right)} = \frac{30}{5} = 30/5 = 6
-3,850
\frac{72\cdot t^5}{t^3\cdot 132}\cdot 1 = \frac{72}{132}\cdot \dfrac{t^5}{t^3}
27,019
b^2 + 1 = d\cdot c \Rightarrow c = \frac1d\cdot (b^2 + 1)
14,842
x^c*x^g = x^{g + c}
33,994
11\cdot (-1) + \left(-14\right) = -25
9,582
\frac{\partial}{\partial x} \left(vx\right) = \frac{\partial}{\partial x} (vx) + x\frac{\mathrm{d}v}{\mathrm{d}x}
46,722
415 = 5 \times 83
32,192
π = 3\times \tan^{-1}(\sqrt{3})
13,109
\frac{194}{2^{10}} = -\frac{1}{2^{10}}\times 846 + \frac{520}{2^{10}} + \frac{520}{2^{10}}
-21,598
\cos{-π \cdot \frac13 \cdot 5} = 0.5
28,274
{i + j \choose i} = (i + j)!/\left(i!\cdot j!\right)
23,301
4/z = z\times 2 \Rightarrow 4 = 2\times z^2
27,780
\frac{1}{2^{15}} \cdot {14 \choose 9} = 1001/16384
36,777
\int \tfrac{18}{y^4}\,dy = 18*\dfrac{1}{y^3*(-4 + 1)} + A = -\frac{6}{y^3} + A
3,402
\sin{y} = \sin(y + \pi*26)
-20,250
-5/(-5) \cdot (-\frac11 \cdot 2) = \frac{1}{-5} \cdot 10
15,880
f_e\cdot f_x = f_x\cdot f_e
23,142
\tfrac{1}{5} \cdot 720 = 144
21,428
\sin(\frac{c}{3^n})*3^n = \frac{\sin\left(\dfrac{c}{3^n}\right)}{\frac{1}{3^n}}
-17,381
\frac{1}{100} \cdot 64.9 = 0.649
15,418
\frac{1}{(1 - u)^{\dfrac{1}{2} \cdot 3}} \cdot \left(1 - u\right) = \frac{1}{(1 - u)^{\frac{1}{2}}}
24,543
B \cdot A^2 \cdot B = A \cdot A \cdot B^2
1,110
r = \frac{1}{6}\cdot 5\cdot (1 - r) + \frac16\cdot 0 \Rightarrow 5/11 = r
-20,631
\frac{x}{15 \cdot x} \cdot 20 = \dfrac{x \cdot 5}{x \cdot 5} \cdot 4/3
20,467
a\cdot \left(-b\right) = -a\cdot b
-11,951
\frac{4}{9} = x/\left(12 \pi\right)*12 \pi = x
5,022
3 \cdot (3z + 4(-1)) - z \cdot 8 + 9(-1) = z + 21 (-1)
29,118
\sin{z} = \sin(2 \cdot \pi + z)
49,068
16\cdot 4 = 4\cdot 2^4=64
22,895
70\% y*90\% = y*63\%
-3,409
2\sqrt{11} = (5 + 4(-1) + 1) \sqrt{11}
8,125
(-c)^{1 / 2}\cdot (-b)^{\tfrac{1}{2}} = i\cdot c^{1 / 2}\cdot i\cdot b^{\frac{1}{2}} = -(c\cdot b)^{\frac{1}{2}}
-7,657
\dfrac{1}{29} \cdot (-20 - 95 \cdot i + 8 \cdot i + 38 \cdot (-1)) = \dfrac{1}{29} \cdot \left(-58 - 87 \cdot i\right) = -2 - 3 \cdot i
-2,812
(2\times (-1) + 1 + 3)\times 13^{1/2} = 13^{1/2}\times 2
12,253
\frac23 \cdot \frac{1}{3} \cdot 2/3 = 4/27
29,321
-i^2 \cdot i = -i \cdot i\cdot i = i = i
11,877
Z \times S = x \implies x = S \times Z
24,112
4\cdot z^2 + 4\cdot z + 4 = (z^2 + z + 1)\cdot 4
14,902
\cos\left(\frac{3\pi}{2}1\right) = 0
31,506
(x + (-1))/(2*x) = \frac{1}{2}*(1 - \frac{1}{x}) = \tfrac{1}{2} - 1/(2*x)
28,832
2/8 + 3/8 = \dfrac58
1,396
a*3 = 3*a
9,621
(1 + y) \left(y + \left(-1\right)\right) = y^2 + (-1)
-19,997
-9/2\cdot \frac{6\cdot t + 8}{6\cdot t + 8} = \tfrac{1}{t\cdot 12 + 16}\cdot (72\cdot (-1) - t\cdot 54)
17,989
x + \frac14 + 5/8 + 2(-1) = 1 \Rightarrow x = \dfrac{1}{8}
28,124
\sin(B) \cos(B)*2 = \sin(2B)
-25,787
7/20 = 7 \cdot 10^{-1}/2
2,750
f*x = -f*\left(-x\right)
-7,812
\dfrac{3 \cdot i - 7}{i \cdot 2 + 5} \cdot \dfrac{5 - i \cdot 2}{5 - i \cdot 2} = \frac{1}{2 \cdot i + 5} \cdot (3 \cdot i - 7)
3,044
\frac{{1 \choose 1}}{{11 \choose 2}} \cdot {10 \choose 1} = 2/11
33,466
\frac{1}{k!}k^2 = \frac{1}{(k + (-1))!} + \frac{1}{(2(-1) + k)!}
10,949
2\cdot m + (-1) = 50 + m - 51 - m
25,116
(f_1 + f_2)^2 = f_1^2 + f_1\cdot f_2\cdot 2 + f_2^2
-2,434
2^{\frac{1}{2}} \cdot 4 = 2^{1 / 2} \cdot (3 \cdot \left(-1\right) + 2 + 5)
21,850
(-\cos{2\cdot z} + 1)/2 = \sin^2{z}
3,014
-\frac{1}{x^2 \cdot 4} + 1 = (1 - 1/(2 x)) (\frac{1}{2 x} + 1)
47,289
5 + 6 + 1 + 5 + 10 = 27
19,354
\tfrac{19}{216} = \frac{1}{6^3}(3^3 - 2 \cdot 2^2)
-17,564
45 + 7 \cdot \left(-1\right) = 38