id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
10,597 | |f\times a| = |f|\times |a| |
7,396 | \left(a + 0*(-1)\right)*\left(a + 0*(-1)\right) = (a + 0)*(a + 0*(-1)) = a |
20,249 | 10*\frac{654321}{123456} = 6*9 + (-1) + 6*7/123456 \approx 53 |
7,833 | e^a\cdot e^{x\cdot i} = e^{x\cdot i + a} |
26,929 | \frac{(-1) + y^2}{y + (-1)} = 1 + y |
29,870 | \frac12 \cdot (a + \left(-1\right)) = \frac{1}{-1} \cdot (b + 3 \cdot \left(-1\right)) = \frac11 \cdot \left(c + 4 \cdot (-1)\right) = k \Rightarrow k \cdot 2 + 1 = a, -k + 3 = b, k + 4 = c |
93 | 30 = 1^2 + 2 * 2 + 5 * 5 = 1^2 + 2 * 2 + 3^2 + 4^2 |
6,836 | 1/\left(\alpha\cdot x\right) = \frac{1}{\alpha\cdot x} |
5,657 | \left( c, f\right) \cdot \left(x + b'\right) = \left( x \cdot c - f \cdot b', b' \cdot c + b' \cdot c\right) |
-5,374 | 48\cdot 10^{1 + 2} = 10 \cdot 10 \cdot 10\cdot 48 |
13,236 | \dfrac{1}{2 v^2} = \frac{1}{2 v v} = \dfrac{1}{2 v^2} |
1,358 | \left(x = 15 + 84 - x\times 2 \Rightarrow 3\times x = 99\right) \Rightarrow x = 33 |
18,319 | |g_l| = \sqrt{|g_l|^2} |
-17,284 | 0.47 = 47/100 |
31,474 | x^2 - y\cdot x\cdot 5 + 6\cdot y^2 = (-3\cdot y + x)\cdot \left(x - y\cdot 2\right) |
23,138 | \frac{38962}{97527} = 1 - \frac{{56 \choose 7}}{{60 \choose 7}} |
15,843 | H \times k \times g = g \times k \times H |
36,007 | \frac{15}{16} + \frac{3}{64} = 63/64 = 1 - \frac{1}{64} |
-20,318 | \tfrac{3*z + 21}{z + 7} = \frac{z + 7}{z + 7}*\frac31 |
2,999 | 2*\left(0*(-1) + x\right) = z + (-1) \implies z = 2*x + 1 |
10,516 | 7^4 - 7^3 + 7 * 7 + 7(-1) + 1 = 2101 = 11*191 |
-8,419 | 2 = -\dfrac{10}{-5} |
-3,757 | \frac{1}{y^3}y^3*96/120 = \dfrac{y^3*96}{y^3*120} |
-22,720 | \frac{1}{81}\cdot 90 = 9\cdot 10/(9\cdot 9) |
-945 | \frac92 = 9/2 |
4,317 | 0 = -(x - 9/2) \implies -9/2 = x |
12,842 | \mathbb{E}[y]\cdot \mathbb{E}[x] = \mathbb{E}[x\cdot y] |
15,469 | (f \cdot g)^2 = (f \cdot g)^2 |
15,645 | \left(-x\right)^2 = (-1)^2\cdot x^2 = x^2 |
15,788 | \frac{1}{8} \cdot 7 \cdot \pi = \pi - \pi/8 |
8,148 | 1 + l + \left(-1\right) + b + (-1) = l + b + \left(-1\right) |
18,462 | 4 = (2\cdot h + b)^2 + 3\cdot b^2 \geq \left(2\cdot h + b\right) \cdot \left(2\cdot h + b\right) + 12 |
-20,271 | 4/4 \frac{-7y + 6\left(-1\right)}{6 - y*2} = \dfrac{1}{24 - 8y}(-28 y + 24 (-1)) |
5,356 | x \implies (x^2 - 3 x + 1)^2 - 3 \left(x^2 - 3 x + 1\right) + 1 = x x - 3 x + 1 = x |
22,788 | \cos{2 \cdot F} - \cos{2 \cdot E} = -2 \cdot (\sin^2{F} - \sin^2{E}) = -2 \cdot (\sin{F} - \sin{E}) \cdot (\sin{F} + \sin{E}) |
-9,581 | -0.8 = -8/10 = -\frac45 |
31,416 | \|z\|_2^2 = z*z = z^2 |
27,261 | (\left(-1\right) + p^2)^2 = p^4 - 2\times p^2 + 1 |
25,605 | {12 \choose 4} = \frac{1}{4! \cdot 8!} 12! |
12,842 | \mathbb{E}(y*z) = \mathbb{E}(y)*\mathbb{E}(z) |
-18,264 | \frac{1}{k\cdot 6 + k^2}\cdot (54\cdot (-1) + k \cdot k - 3\cdot k) = \frac{(k + 6)\cdot (9\cdot (-1) + k)}{k\cdot (6 + k)} |
22,696 | 3^{70} + 2^{70} = 3^{70} (1 + (2/3)^{70}) |
2,511 | 720 \cdot x^4 + 5280 \cdot x^3 + 12240 \cdot x^2 + x \cdot 11520 + 3840 = 240 \cdot (3 \cdot x + 4) \cdot (x + 4) \cdot (x + 1) \cdot (x + 1) |
-7,755 | \dfrac{1}{3 - i*5}(8 - i*2) \dfrac{3 + 5i}{5i + 3} = \frac{1}{-5i + 3}(8 - 2i) |
35,281 | 5 \cdot \dfrac{16}{36} - 5 \cdot 20/36 = -\frac{20}{36} = -5/9 |
2,192 | r = t_2 \cdot t_1 \Rightarrow r \cdot t_1 = t_2 |
-20,175 | -\dfrac74\cdot \dfrac{2 - 6\cdot p}{2 - p\cdot 6} = \dfrac{1}{-24\cdot p + 8}\cdot (42\cdot p + 14\cdot (-1)) |
-20,327 | \frac{1}{2x + 8(-1)}(8 - 20 x) = \frac{4 - x*10}{x + 4(-1)}*2/2 |
2,779 | |h^2 + 2\cdot h\cdot b + b \cdot b| = |h^2 + h\cdot b + b^2 + h\cdot b| = |0 + h\cdot b| = |h\cdot b| |
10,059 | \frac{64}{72*2}1 = 32/72 |
16,192 | \dfrac{1}{z^3 - d^3}\cdot z^3 = \frac{1}{z^3 - d^3}\cdot (z^3 - d^3 + d^3) = 1 + \frac{d^3}{z^3 - d^3} |
33,628 | 3 \cdot 17 = 10 \cdot 10 - 7^2 |
33,856 | \dfrac{2h}{2} = h |
-11,099 | (y + 3*(-1))^2 + f = \left(y + 3*(-1)\right)*\left(y + 3*(-1)\right) + f = y^2 - 6*y + 9 + f |
-7,250 | 2/9 \cdot 5/8 = \frac{1}{36} \cdot 5 |
-18,935 | 31/36 = x_r/(81*π)*81*π = x_r |
22,895 | x\cdot 63\% = x\cdot 70\%\cdot 90\% |
3,786 | q^2 \cdot x = q \cdot q \cdot x |
-26,364 | -\dfrac14 \cdot 5 \cdot (-5/4) = 25/16 |
28,132 | (X + U)^2 - X^2 - U^2 = U*X + U*X |
11,852 | -\tan(-\frac{\pi}{2} + x) = \cot(x) |
30,156 | (V + (-1))\cdot (V + 1) + 8\cdot 3 = 23 + V^2 |
5,233 | 99.75 = 3*\frac{1}{12}*(20 * 20 + (-1)) |
-19,012 | 17/18 = Y_s/(9\times \pi)\times 9\times \pi = Y_s |
-2,345 | -\dfrac{3}{20} + \frac{9}{20} = \tfrac{6}{20} |
21,797 | n^4\cdot n^3 = n^7 |
-5,494 | \frac{1}{(6 + r) \cdot 5} \cdot 3 = \dfrac{3}{30 + 5 \cdot r} |
24,957 | \frac{1}{x^d}\cdot x^f = x^{f - d} |
15,124 | 1/5 = \frac{12}{16}*4/15 |
20,424 | \dotsm + h + \dotsm + a + \dotsm = \dotsm + a + \dotsm + h + \dotsm |
5,091 | -\frac{1}{2} + \frac3x = 6/(x*2) - x/(x*2) |
5,077 | \sin{y/2} = \cos{\tfrac{1}{2}y} = \sin(\pi/2 - \frac12y) |
-29,321 | -4 + 7*i = 7*i - 6 + 2 |
-9,146 | z*2*2*2*2 + 2*2*2*2*2 = 16*z + 32 |
22,059 | {l \choose Y} = {l + (-1) \choose (-1) + Y} + {(-1) + l \choose Y} |
-7,748 | a^2 - g^2 = (g + a)\cdot (a - g) |
29,204 | 2 + a*b - a + b = 1 + ((-1) + b)*(a + (-1)) |
33,651 | \frac{1}{y^2 \cdot 3 + 2} = \dfrac{1}{2 \cdot (1 + y^2 \cdot 3/2)} |
6,526 | (1 + 1) (z + y) = z + y + z + y = z + y + z + y |
15,694 | 1 - 2 \times t + t^2 = \left(-t + 1\right)^2 |
18,485 | (p\cdot e^{i\cdot 0})^3 = (p\cdot e^{i\cdot 2\cdot \pi}) \cdot (p\cdot e^{i\cdot 2\cdot \pi}) \cdot (p\cdot e^{i\cdot 2\cdot \pi}) = p^3 |
-20,517 | -\frac{1}{z + 3\cdot (-1)}\cdot 5\cdot \frac19\cdot 9 = -\frac{45}{9\cdot z + 27\cdot (-1)} |
29,538 | 2i = -1 + i \Rightarrow i = -1 |
15,727 | |\frac{1}{2 + x} - \frac{1}{2 + z}| = \frac{|x - z|}{(2 + x) \cdot (2 + z)} \leq \dfrac{1}{4} \cdot |x - z| |
-9,316 | y \cdot 3 \cdot 3 \cdot 3 y - 3 \cdot 3 \cdot 13 y = -117 y + y y \cdot 27 |
-5,468 | \dfrac{1}{4\cdot n + 20\cdot (-1)} = \frac{1}{(5\cdot (-1) + n)\cdot 4} |
24,296 | X*g*e rightarrow g*X*e |
14,064 | (b + 1) \cdot (b + a) = b \cdot \left(1 + a + b\right) + a |
24,023 | 4 \cdot z_1^2 + x \cdot x + y^2 = 4 \cdot x \cdot y \cdot z_1 \cdot \dotsm \cdot \dotsm \cdot \dotsm \cdot \dotsm \cdot \dotsm \cdot \dotsm \cdot \dotsm \cdot \dotsm \cdot 2 |
31,876 | 7 + x^2 + 8x = (x + 1) (x + 7) |
6,899 | E[\bar{X}^2] = Var[\bar{X}] + E[\bar{X}]^2 |
-23,177 | -\frac{1}{4} \cdot \left(-\frac18\right) = 1/32 |
-4,977 | 0.9 \cdot 10^{-3 - -3} = 10^0 \cdot 0.9 |
6,946 | \cos(-\alpha + \pi/2) = \sin\left(\alpha\right) |
28,091 | \cos{C} \cdot \sin{B} + \sin{C} \cdot \cos{B} = \sin(B + C) |
19,396 | 5 \cdot 5 - 2^2 \cdot 6 = 1 \cdot 1 \cdot 1 |
-6,705 | 6/100 + 10^{-1} = \frac{10}{100} + \frac{1}{100}\cdot 6 |
17,654 | i^{-1} = -i\cdot (-i)^{-1}/i = \tfrac{1}{(-1)\cdot i^2}\cdot ((-1)\cdot i) = -i |
-21,012 | \frac{(-2)*r}{6 + r}*\frac14*4 = \frac{r*(-8)}{24 + 4*r} |
-11,550 | 8 - 24 i = -i*24 - 8 + 16 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.