id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
31,756 | \frac{1}{A*H} = 1/(H*A) |
36,074 | \binom{6}{2}/(\binom{7}{3}) = \dfrac{1}{35} \cdot 15 = 3/7 |
8,572 | Y*V = V*Y |
17,413 | z \cdot 3 - z \cdot 2 = z |
-14,927 | 440 = 90 + 87 + 95 + 85 + 83 |
-10,457 | \frac{1}{10} \cdot 10 \cdot (-\dfrac{1}{q^2}) = -\frac{10}{10 \cdot q^2} |
23,251 | 2^{3\times m} = 4^m\times 2^m |
1,472 | D^t = \frac{1}{(1/D)^t} = (\frac{1}{\frac1D})^t = D^t |
-1,283 | \frac{5}{7} \cdot (-7/2) = \frac{(-7) \cdot 1/2}{7 \cdot \dfrac15} |
-18,567 | -\dfrac{1}{6} = -1/6 |
11,544 | u^2*m = m*u*u |
-11,569 | -9\cdot i = 0 + 0\cdot (-1) - i\cdot 9 |
8,456 | \left(-b \cdot 8 + 1\right) \cdot (1 + b)^2 = 1 - 8 \cdot b^3 - b^2 \cdot 15 - b \cdot 6 |
-30,247 | \left(9 + y\right) \left(y + 2\right) = y^2 + 11 y + 18 |
19,946 | 2m! = 2*1*2 \ldots m = 2*4 \ldots*2m |
3,152 | |\tfrac1x\times (x - x) + 0\times (-1)| = |\frac{1}{x}\times x| \lt \frac1x |
-26,199 | 10 \cdot 5 + \frac{4^2}{4} = 50 + \dfrac{16}{4} = 50 + 4 = 54 |
-20,485 | \frac{5}{5} \cdot \tfrac{5 + n}{-n + 9} = \frac{25 + 5 \cdot n}{-5 \cdot n + 45} |
-29,339 | (2x + 5) (2x + 5(-1)) = (2x)^2 - 5^2 = 4x * x + 25 \left(-1\right) |
-7,107 | \frac{5}{11} \cdot 2/12 = 5/66 |
31,055 | (n + 1)^2 - n^2 = 2n + 1 |
468 | 0 = -i\cdot U + u \Rightarrow \dfrac{u}{U} = i |
-24,445 | \dfrac{1}{5 + 9} \cdot 98 = \frac{98}{14} = 98/14 = 7 |
-20,579 | \frac185 (-\tfrac{1}{-3}3) = -15/\left(-24\right) |
39,715 | \tfrac143 = \frac{3}{4} |
11,640 | 2010 \cdot \frac12 \cdot \frac13 \cdot 2 \cdot \dfrac15 \cdot 4 = 2010 \cdot \frac26 \cdot \frac{4}{5} = 2010 \cdot \frac{1}{15} \cdot 4 = 536 |
15,906 | 8 = \frac{1}{24} \times (1 \times 2^6 + 6 \times 0 + 2^4 \times 3 + 6 \times 2 \times 2 \times 2 + 8 \times 2^2) |
8,389 | a*b = x*y,-y^2 + x^2 = a^2 - b^2 \Rightarrow -b^2 + y^2 = -a * a + x^2 |
426 | n = \frac{n*2}{2} |
-1,656 | 0 - \frac{3}{2} \cdot \pi = -\dfrac32 \cdot \pi |
-1,740 | 0 + 5/4*\pi = 5/4*\pi |
21,465 | l!*2 = l! + l! |
35,161 | 17^{0.3} = 1 + 0.84 + \frac{1}{2}0.84^2 + 0.84^3/3! = 2.292 |
12,987 | S^{k \cdot l} \cdot \Lambda_l^j \cdot \Lambda_k^i = \Lambda_l^j \cdot S^{k \cdot l} \cdot \Lambda_k^i |
1,785 | B = 5/6*\left(B + 1\right) + \frac{1}{6}*\left(y + 1\right)\Longrightarrow B = 6 + y |
11,199 | z \cdot R/I = R \cdot z/I |
9,798 | \frac{\left(-3\right) \frac{1}{2}}{(-5)\cdot 1/4} = 6/5 |
-2,629 | (2 + 4 \cdot (-1) + 5) \cdot \sqrt{3} = 3 \cdot \sqrt{3} |
8,154 | i \cdot \sin{\frac{\pi}{2} \cdot 3} + \cos{3 \cdot \pi/2} = -i |
909 | -b^2 + a^2 = (b + a)*\left(-b + a\right) |
11,461 | \left(1 + 2 + 3 + \dotsm + 20\right)/20 = \frac{1}{2}*21 = 10.5 |
24,282 | \left(f - \alpha\right)*(f + \alpha) = -\alpha^2 + f^2 |
6,481 | B A^k = A B A^{k + \left(-1\right)} = A^2 B A^{k + 2 (-1)} = \dotsm = A^k B |
190 | 2\cdot \frac{1}{2}\cdot \pi + \cos{\frac{\pi}{2}} + \frac{8}{\pi^3}\cdot (\pi/2)^3 = \pi + 1 |
22,366 | y^2 + (-1) = y^2 + 1 = (y + 1) \cdot (y + 1) |
1,066 | (h/c*c)^k = h^k/c*c |
17,331 | y^4 - 7 \cdot y^2 + 1 = (y^2 + 1)^2 - 9 \cdot y^2 = \left(y^2 + 1 + 3 \cdot y\right) \cdot \left(y^2 + 1 - 3 \cdot y\right) |
16,829 | (d_1 - d_2)\cdot (d_2 + d_1) = d_1^2 - d_2^2 |
20,112 | y < b \Rightarrow y * y < b^2 = \frac19 |
-1,094 | \dfrac{30}{21} = \frac{10}{21*\frac{1}{3}}1 = 10/7 |
9,956 | z * z + z + 1 = z^2 + z + \frac{1}{4} + \dfrac34 = \left(z + 1/2\right)^2 + 3/4 |
10,825 | x*\left(-0.95^6 + 1\right) = -0.95^6 x + x |
22,623 | 0 = y^2 + 2\cdot i\cdot y + 2\cdot \left(-1\right) = (y + i) \cdot (y + i) + (-1) = \left(y + \left(-1\right) + i\right)\cdot (y + 1 + i) |
5,040 | \left(1 + x\right)! - x! = x! \cdot x |
7,526 | 10^{81} + (-1) = (10^9)^9 + (-1) = 5185^9 + \left(-1\right) = 5185\cdot \left(5185^2\right)^4 + (-1) = \cdots = 729 |
-23,646 | 4/25 = 4*\frac{1}{5}/5 |
-6,565 | \frac{5}{x\cdot 2 + 18\cdot (-1)} = \dfrac{1}{(9\cdot (-1) + x)\cdot 2}\cdot 5 |
-3,759 | 121 d^3/\left(d*99\right) = \tfrac{121}{99} d d^2/d |
6,519 | \frac{|a|}{|x|} = |a/x| |
-6,575 | \frac{1}{\left(3 \times (-1) + y\right) \times (y + 9 \times \left(-1\right))} \times (2 \times \left(y + 9 \times (-1)\right) - 5 \times (3 \times (-1) + y) + 6 \times (-1)) = \dfrac{2 \times (y + 9 \times (-1))}{(y + 3 \times (-1)) \times (9 \times (-1) + y)} - \dfrac{5 \times \left(y + 3 \times \left(-1\right)\right)}{(3 \times (-1) + y) \times (y + 9 \times (-1))} - \frac{6}{(y + 3 \times (-1)) \times (9 \times (-1) + y)} |
5,588 | (f - 5\cdot h)\cdot \left(-2\cdot h + f\right) = f^2 + h \cdot h\cdot 10 - 7\cdot h\cdot f |
-17,301 | \frac{1}{100} \cdot 71.8 = 0.718 |
-10,741 | \dfrac{50}{r\cdot 25 + 20} = \dfrac{1}{r\cdot 5 + 4}\cdot 10\cdot \dfrac{5}{5} |
7,219 | \left\{1, \ldots, 2, 0\right\} = \mathbf{N} |
-27,745 | \frac{\mathrm{d}}{\mathrm{d}z} (3 \cdot \tan{z}) = 3 \cdot \frac{\mathrm{d}}{\mathrm{d}z} \tan{z} = 3 \cdot \sec^2{z} |
-17,019 | -6 = -6\times (-r) - 42 = 6\times r - 42 = 6\times r + 42\times (-1) |
31,457 | x\times 2 + 1 \leq 2 + y\Longrightarrow y + 1 \geq x\times 2 |
11,791 | \cos(-x + 2\pi) = \cos(x) |
-20,526 | -\frac{10}{1}\cdot \frac{7\cdot (-1) + s}{s + 7\cdot (-1)} = \dfrac{1}{s + 7\cdot (-1)}\cdot (70 - s\cdot 10) |
30,038 | xA + Ay = \left(x + y\right) A |
13,640 | \lfloor x \rfloor = 2\Rightarrow 2\leq x<2.55\; |
17,914 | r*2/3 + 2*(-1) = \dfrac{1}{6}*(-12 + 4*r) |
-5,020 | \frac{10.8}{10} = \frac{1}{10}10.8 |
18,135 | x^4 + 18\cdot x^3 + x \cdot x\cdot 122 - x\cdot 720 + 3240\cdot (-1) = (180 + x^2 + x\cdot 20)\cdot (x^2 - 2\cdot x + 18\cdot (-1)) |
35,667 | 4 = (y^2 + 1)^{\dfrac{1}{2}} + (1 + \left(1/y\right)^2)^{\dfrac{1}{2}} = (y^2 + 1)^{1 / 2} \cdot (1 + \frac1y) |
-20,450 | -\frac{5}{4}\cdot \frac{r + 4\cdot (-1)}{r + 4\cdot (-1)} = \tfrac{1}{r\cdot 4 + 16\cdot \left(-1\right)}\cdot \left(20 - 5\cdot r\right) |
-7,147 | \dfrac{3}{44} = 3/11\cdot 3/12 |
2,702 | \left(p = \tan{x} - \sin{x} \implies p = \frac{2\cdot x \cdot x \cdot x}{-x^2 + 4}\right) \implies 0 = x \cdot x \cdot x\cdot 2 + p\cdot x \cdot x - p\cdot 4 |
8,921 | a \cdot a \cdot b = a \cdot a \cdot b |
25,221 | A^4 \cdot A = A^5 |
4,542 | \frac{0 \times (-1) + y}{z + 0 \times (-1)} = y/z |
22,248 | (1 + l)*((-1) + l) = (-1) + l^2 |
12,115 | \frac{1}{x \cdot c} = \dfrac{1}{c \cdot x} |
33,573 | 2/3 = 1 - \dfrac{1}{3} |
30,142 | 18 + y^2 - y*11 = \left(y + 2*(-1)\right)*(y + 9*\left(-1\right)) |
-2,465 | \sqrt{325} + \sqrt{13} = \sqrt{13} + \sqrt{25\cdot 13} |
10,101 | x^{l/n} = (x^l)^{\frac{1}{n}} = (x^{1/n})^l |
-30,546 | \frac{d}{dz_1} z_2 = -\frac14\cdot \frac{1}{z_2^2}\cdot e^{z_1} = -\dfrac{e^{z_1}}{4\cdot z_2^2} |
29,776 | f + \left(-1\right) + 99/9 = f + 10 |
-2,970 | 11^{1/2}*(5 + 4 + 2*(-1)) = 7*11^{1/2} |
35,395 | \cos(x + y) = -\sin{x} \sin{y} + \cos{x} \cos{y} |
-17,430 | 55 = 26\cdot (-1) + 81 |
6,353 | (k + l) \cdot g = -(-k - l) \cdot g = -(-k \cdot g + -l \cdot g) = --k \cdot g - -l \cdot g = k \cdot g + l \cdot g |
27,991 | 0 = (r + 1)^2*(r + (-1))^2 \implies r = 1,-1 |
38,158 | 2^{1/3}/2 = 4^{-\dfrac{1}{3}} |
39,244 | 2^{6}=64 |
22,341 | \frac14 + \frac15 - \tfrac{1}{5 \times 4} = \frac15 \times 2 |
29,879 | \dfrac{1}{52} \cdot 26 \cdot 4/25 = \dfrac{1}{1300} \cdot 104 |
-437 | \left(e^{\dfrac{23 i\pi}{12}}\right)^5 = e^{23 \pi i/12*5} |
10,939 | 0 = a \cdot \sin(m) + b \cdot \cos(m) \cdot 0 = -a \cdot \sin\left(m\right) + b \cdot \cos\left(m\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.