id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
23,553 | (1 + y) \cdot (-y + 1) = 1 - y^2 |
15,072 | \dfrac{4}{4!} \cdot 10 \cdot 8 \cdot 6 = 80 |
-20,753 | \frac{14 \cdot i}{i \cdot 2 + 8 \cdot (-1)} = \dfrac{2}{2} \cdot \frac{7 \cdot i}{4 \cdot (-1) + i} |
14,992 | 0 = (m \cdot m - h \cdot h)^2 + m^2 = (m^2 - i\cdot m - h^2)\cdot (m \cdot m + i\cdot m - h^2) |
-12,173 | 1/5 = q/(10 \pi)\cdot 10 \pi = q |
-3,541 | 2/100 = \frac{2}{2*50} |
22,840 | 12 (x + (-1))^2 (1 + x) = (x + (-1)) \left(x + 1\right) (\left(-1\right) + x)*12 |
27,774 | i\cdot i = i^2 |
32,036 | b + 0 (-1) = b |
24,119 | (x + 2)^{1 / 2} \left(2 + x\right) = (x + 2)^{3/2} |
41,442 | 9 = \left(-3\right)\cdot \left(-3\right) |
26,193 | -\frac{b^2}{4} + (x + \frac{b}{2})^2 + c = x \cdot x + b\cdot x + c |
8,467 | \pi\cdot 0 - \pi/8 = -\frac{\pi}{8} |
14,682 | 4^3 + 4^2 = 4^2\cdot (4^2 + (-1))/3 |
-20,797 | -1^{-1} \dfrac{1}{9s + 6}(6 + s*9) = \frac{-9s + 6\left(-1\right)}{9s + 6} |
-20,021 | \frac{9 - 9*q}{4*(-1) + 4*q} = -\dfrac94*\frac{1}{(-1) + q}*(q + (-1)) |
-1,702 | \pi\cdot \frac{13}{12} + 5/6\cdot \pi = 23/12\cdot \pi |
31,123 | 20^{1 / 2} = 5^{1 / 2} \cdot 2 |
9,544 | x_n = x_{n + \left(-1\right)} + x_{2 \cdot (-1) + n} \Rightarrow x_{(-1) + n} = x_n - x_{2 \cdot (-1) + n} |
25,595 | |z_2 + 0\cdot (-1)| = |z_2| |
12,043 | 2 \cdot 3^4 \cdot 1247527 = 202099374 |
17,257 | (a - f) \left(f + a\right) = a^2 - f^2 |
4,263 | 3^3 - 3*3^2 + 3*(-1) + 3 = 3^3 - 3 * 3 * 3 + 0 = 0 |
17,823 | \cos\left(\operatorname{acos}(2/z)\right) = \frac{1}{z}\cdot 2 |
-20,656 | \frac{1}{(-1) + q}\left(2(-1) + q\right) \cdot 7/7 = \frac{14 \left(-1\right) + 7q}{q \cdot 7 + 7(-1)} |
9,787 | |x*\alpha| = |x|*|\alpha| |
-10,747 | 3/3*(-\dfrac{1}{5*(-1) + t*3}*10) = -\dfrac{1}{15*(-1) + 9*t}*30 |
6,696 | 3^{2*n} + (-1) = ((-1) + 3^n)*(1 + 3^n) |
3,208 | 11/19\times \frac{12}{20} = \dfrac{132}{380} |
14,579 | \left(z + 1\right)\cdot (z + 3\cdot (-1)) = \left(z + (-1) + 2\right)\cdot (z + (-1) + 2\cdot (-1)) = (z + (-1))^2 + 4\cdot (-1) |
-26,137 | -\frac{3}{2} - -\frac{1}{1}\cdot 3 = -1.5 + 3 = 1.5 |
34,825 | d + z = z = z + d |
-11,300 | (z + a)^2 = (z + a)\cdot \left(z + a\right) = z^2 + 2\cdot a\cdot z + a \cdot a |
-26,440 | 4 + x^2 - 5*x = \left(4*(-1) + x\right)*((-1) + x) |
-6,014 | \frac{5}{(r + 2)\cdot (3 + r)}\cdot r = \frac{r\cdot 5}{6 + r^2 + 5\cdot r} |
1,343 | \int_a^b \frac{1}{x}\,dx = \int_a^b 1/x\,dx |
26,089 | x_g\cdot x_i = x_g\cdot x_i |
26,999 | 1/(G\cdot n) = 1/(n\cdot G) |
2,455 | A \times I = A \times I |
-19,031 | \frac{9}{20} = \dfrac{A_s}{25 \pi} \cdot 25 \pi = A_s |
-24,579 | 5\cdot 8 + 3\cdot \frac{1}{10}10 = 5\cdot 8 + 3 = 40 + 3 = 40 + 3 = 43 |
29,711 | -2\times \left(2 - 2\times z\right) + \left(-1\right) = 5\times (-1) + z\times 4 |
5,444 | B/z = \frac{B}{z} |
2,091 | x + \alpha/2 + \alpha/2 = x + \alpha |
18,226 | (-1) + z^8 = (z^4 + 1) \cdot \left(z^4 + (-1)\right) |
40,764 | -\tfrac{1}{7} = -\tfrac17 |
-12,962 | \frac{1}{20}\times 15 = \tfrac{1}{4}\times 3 |
-7,120 | 4/10\times 5/11 = \tfrac{1}{11}\times 2 |
22,311 | D_i\times D_j = D_j\times D_i |
27,403 | -\frac{6}{20} + 1 = 7/10 |
-26,458 | y^2 \cdot 9 + 4 - 12 \cdot y = (y \cdot 3)^2 + 2 \cdot 2 - 2 \cdot 2 \cdot y \cdot 3 |
8,583 | \dfrac{(-1)^n}{\left(-1\right)^{2 \cdot n}} = \dfrac{1}{(-1)^n} |
15,881 | i = j \implies -i + j = 0 |
2,690 | 6 + 420 + 60*\left(-1\right) = 366 |
28,705 | 500000 = 5*10^5 |
28,853 | 1 + {5 \choose 2} = 11 |
-5,738 | \dfrac{5}{q^2 - 10q + 16} = \dfrac{5}{(q - 8)(q - 2)} |
-16,745 | -6 = -6 \times (-p) - -48 = 6 \times p + 48 = 6 \times p + 48 |
-358 | \frac{9!}{(3*\left(-1\right) + 9)!} = 9*8*7 |
-23,101 | 3/4\cdot 15/4 = \tfrac{45}{16} |
20,957 | x = \frac13 \cdot \left(2 \cdot x + x\right) |
670 | (a - b)^2 = (a - b)*(a - b) = a * a - 2*a*b + b^2 |
3,645 | G_2 = G_1 \cap G_2 \Rightarrow \left\{G_2, G_1\right\} |
-20,176 | \frac{1}{8 \cdot (-1) + x} \cdot (-5 \cdot x + 2 \cdot (-1)) \cdot \frac{3}{3} = \frac{6 \cdot (-1) - 15 \cdot x}{3 \cdot x + 24 \cdot \left(-1\right)} |
-1,679 | -5/4 \times \pi = \pi \times 7/12 - 11/6 \times \pi |
-20,622 | \frac{1}{l\cdot 30}\left(-l\cdot 40 + 20 (-1)\right) = 5/5 (-l\cdot 8 + 4(-1))/\left(l\cdot 6\right) |
-720 | -24 \cdot \pi + \frac{299}{12} \cdot \pi = 11/12 \cdot \pi |
18,219 | Z^l*Z = Z^{l + 1} = Z*Z^l |
8,570 | -\frac{1}{\sqrt{3}} + 1 = 1 - \tfrac13\sqrt{3} |
-4,915 | \frac{0.74}{10} = \frac{0.74}{10} |
55,095 | 0 = det\left(x^4\right) = det\left(x\right)^4 |
717 | \dfrac1z = \bar{z} = z^n rightarrow z^{n + 1} = 1 |
-1,262 | \frac{1}{(-7) \frac{1}{5}}(\left(-8\right) \dfrac13) = -\frac{5}{7} (-\frac138) |
15,956 | \sin{2*z} = \frac{2*\tan{z}}{1 + \tan^2{z}} |
-12,224 | 2/3 = \dfrac{1}{10 \cdot \pi} \cdot p \cdot 10 \cdot \pi = p |
-22,279 | m \cdot m + 9\cdot m + 14 = (m + 2)\cdot (m + 7) |
25,696 | \cot(y + 2\pi) = \cot{y} |
-23,017 | \dfrac{77}{4 \cdot 11} \cdot 1 = 77/44 |
6,651 | 1/(5*49*17) = \frac{1}{4165} |
9,601 | (y/g*g)^i = y^i/g*g |
921 | 15/51 = \dfrac{(-1) + 16}{52 + (-1)} |
18,904 | \frac{1}{(1 + 1) \cdot 2^1} \cdot (1 + 2) = \tfrac34 = 1 - 1/4 = 1 - \frac{1}{(1 + 1) \cdot 2^1} |
7,608 | (t\times x)^2 = x^2\times t \times t |
907 | 8/216 = 2/6\cdot \frac{1}{36}\cdot 4 |
1,157 | \frac{1}{d + b}\cdot (d^2 + b\cdot d + b^2) = d + b - \frac{b\cdot d}{d + b} |
-1,721 | \tfrac{7}{2}*\pi - \pi*2 = \pi*\tfrac32 |
25,338 | 2^2 + 3^2 + 6^2 = 7 * 7 |
-9,431 | -2\times 3\times 5 - 3\times 3\times 3\times t = 30\times (-1) - 27\times t |
-21,709 | -34/11 = -34/11 |
-2,905 | 3^{1 / 2} + (16*3)^{\dfrac{1}{2}} = 3^{1 / 2} + 48^{1 / 2} |
3,696 | n\cdot x = 1\Longrightarrow x = 1/n |
44,120 | (-19600) (-1) - 19177 = 423 |
22,798 | -\frac{1}{8}\cdot 9 = -9/8 |
20,129 | 19 = 2 \times \left(-1\right) + 164 + 82 \times (-1) + 38 \times (-1) + 18 \times (-1) + 5 \times (-1) |
8,539 | \frac{1}{27}\cdot 4/180 = \frac{1}{1215} |
21,910 | 1008 + \left(2014 + 1008 \cdot (-1)\right)/2 = 1511 |
32,898 | (\sigma^2 + 5*\sigma + 5)^2 - 1^2 = (\sigma^2 + 5*\sigma + 4)*\left(\sigma^2 + 5*\sigma + 6\right) = (\sigma + 1)*(\sigma + 4)*\left(\sigma + 2\right)*\left(\sigma + 3\right) |
7,089 | 2*l + 1 = l^2 + 2*l + 1 - l^2 = (l + 1) * (l + 1) - l^2*\cdots |
27,144 | \frac{1}{4^2}\cdot (-1^2 + 2^2) = \frac{3}{16} |
-11,082 | (y + 5 \cdot (-1)) \cdot (y + 5 \cdot (-1)) + b = (y + 5 \cdot (-1)) \cdot (y + 5 \cdot (-1)) + b = y^2 - 10 \cdot y + 25 + b |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.