id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-18,390 | \tfrac{5\cdot m + m^2}{m^2 + m\cdot 11 + 30} = \frac{(5 + m)\cdot m}{(6 + m)\cdot \left(m + 5\right)} |
8,650 | (1 - x) \cdot (1 + \ldots + x^{m + (-1)}) = 1 + \ldots + x^{m + (-1)} - x + \ldots + x^m = 1 - x^m |
7,646 | z^4\cdot 2 + z \cdot z\cdot 2 + \left(-1\right) = (z^2\cdot 2 + 1 - \sqrt{3})\cdot (\sqrt{3} + z^2\cdot 2 + 1)/2 |
9,160 | (1 + x^2 - x) (x + 1) (x + (-1)) \left(x^2 + x + 1\right) = (x^3 + (-1)) \left(x \cdot x^2 + 1\right) |
37,146 | -x \geq 0\Longrightarrow x \leq 0 |
20,784 | 1 = -h + g \implies g = 1, h = 0 |
32,386 | \left(7 - 2\cdot \sqrt{3}\right)\cdot (2\cdot \sqrt{3} + 7) = 37 |
1,611 | \frac{1}{10}9*8/9/8 = 1/10 |
-9,351 | -11*11*z*z = -121*z^2 |
-14,036 | \frac{81}{6 + 3} = 81/9 = \tfrac{81}{9} = 9 |
3,557 | (-c + g) \cdot \left(g + c\right) = -c^2 + g^2 |
46,110 | \frac{1}{4\cdot 4} + \frac{2}{4}\cdot 1/4 + 3\cdot \frac14/4 + \frac{1}{4}\cdot 4/4 = \frac58 |
-4,955 | 45 \cdot 10^7 = 45 \cdot 10^{1 + 6} |
-4,899 | 0.78\cdot 10^{0 (-1) + 2} = 0.78\cdot 10^2 |
-3,282 | \sqrt{10}*(4(-1) + 5 + 2) = \sqrt{10}*3 |
9,723 | -\frac{1}{(y - i)^2} = d/dy \left(y - i\right)^{-1} |
48,596 | 18 = 5 + 4 + 9 |
-18,306 | \frac{1}{y^2 - y + 30\cdot (-1)}\cdot (y^2 + 5\cdot y) = \tfrac{(5 + y)\cdot y}{(5 + y)\cdot \left(6\cdot (-1) + y\right)} |
29,204 | 2 + b\cdot a - b + a = \left(a + (-1)\right)\cdot (b + (-1)) + 1 |
-4,490 | \frac{y + 17 \cdot (-1)}{3 \cdot (-1) + y^2 + y \cdot 2} = \tfrac{5}{y + 3} - \frac{4}{\left(-1\right) + y} |
39,948 | 3^{\tfrac{1}{m}} = 3^{\frac1m} |
5,314 | \frac{1}{(-x + 1)^2}*\left(k*x^{1 + k} - x^k*\left(k + 1\right) + 1\right) = 1 + x*2 + x^2*3 + \cdots + x^{k + (-1)}*k |
-7,158 | 4/5 \cdot \frac{3}{4} = \frac{3}{5} |
22,200 | a*b*e = e*b*a |
-22,352 | (8 + n)*\left(n + 5*\left(-1\right)\right) = 40*\left(-1\right) + n^2 + n*3 |
39,705 | e\cdot n = e + \left(-1\right)^e\cdot n = n = n + \left(-1\right)^n\cdot e = n\cdot e |
13,554 | 3\cdot \left(144 - 84\right) - 2\cdot 84 = 12 |
40,938 | \dfrac85 = \frac85 |
27,714 | (a + 1)^2 d = (a^2 + 2a + 1) d = a^2 d + 2ad + d = ada + ad + ad + d |
13,052 | \frac{10*9 + 2*10}{{13 \choose 3}} = \frac{1}{13}*5 |
24,227 | x^{10} + (-1) = (1 + x^8 + x^6 + x^4 + x^2) (x + 1) ((-1) + x) |
2,532 | 3^k + (-1) + 2*3^k = (-1) + 3^{k + 1} |
3,530 | ((-1) + x) * ((-1) + x) = ((-1) + x)*(x + (-1)) |
9,499 | 7 \cdot 1/36/\left(\tfrac{1}{4}\right) = 7/9 |
3,088 | 3\cdot 5/(\sqrt{5}) = \frac{1}{1/5 \sqrt{5}}3 |
-20,679 | -20/(-6) = -\frac{2}{-2} \cdot 10/3 |
4,725 | 1 + y + y \cdot y + \cdots = \dfrac{1}{-y + 1} |
30,643 | 24 \times 6 = 2 \times 6 \times 24/2 = 12 \times 12 |
-23,086 | \frac{1}{16}7 = -\dfrac12 (-\dfrac78) |
13,933 | \sin(x) = \left(\sqrt{\sin(x)}\right)^2 |
11,687 | \left(-1\right) + y^2 = (1 + y)\cdot \left(y + \left(-1\right)\right) |
16,656 | \dfrac{9}{32} = \frac{1}{2} \cdot 9 / 16 |
25,885 | r_1/(s_1) \cdot r_2/(s_2) = \frac{r_2 \cdot r_1}{s_2 \cdot s_1} |
17,772 | 2^{l + 1 + 1} + (-1) = 2^{l + 2} = 2\cdot 2^{l + 1} |
34,014 | \sin{a} = \sin(-a + \pi) |
32,109 | 3\cdot 2 + 4 = 10 |
-20,314 | \frac{5\cdot r + 7}{7 + 5\cdot r}\cdot \frac94 = \frac{63 + r\cdot 45}{r\cdot 20 + 28} |
-23,300 | 1/(3\cdot 7) = 1/21 |
14,922 | f x h = f x h |
20,435 | 4 = \left(-1\right) \cdot (-4) = (-4) \cdot \left(-1\right) |
21,662 | 1 = \frac{ag}{ag} = g*1/a a/g |
1,221 | |x| = |x - c + c| \leq |x - c| + |c| |
17,395 | y + 1 = 1 + 0*y^2 + y |
2,801 | \mathbb{E}[U] \cdot \mathbb{E}[C] = \mathbb{E}[U \cdot C] |
26,278 | A^{b + h} = A^h\cdot A^b |
22,257 | \alpha^2 + \alpha + 1 = -\alpha * \alpha + \alpha + (-1) = \alpha |
-8,970 | 67.2\% = \dfrac{67.2}{100} |
-1,577 | \pi*25/12 - 2*\pi = \pi/12 |
40,955 | 766 = 2\cdot 383 |
6,767 | -d\cdot x = x\cdot (-d) |
22,938 | (B \cdot A/B)^k = \frac{A^k}{B} \cdot B |
15,445 | (z^2 + 4)^2 = z^4 + z^2*8 + 16 |
18,745 | -l \cdot l + a_n^2 = (-l + a_n)^2 + 2l\cdot (a_n - l) |
-18,983 | 1/6 = \frac{1}{4 \times \pi} \times A_s \times 4 \times \pi = A_s |
28,103 | \sin{x} = (e^{i\cdot x} - e^{-i\cdot x})/(2\cdot i)\cdot \cos{x} = \frac{1}{2}\cdot (e^{i\cdot x} + e^{-i\cdot x}) |
6,171 | \cos\left(y\right) = \sin\left(y + \frac{\pi}{2}\right) |
6,996 | 2*x = x - -x |
18,098 | \frac{\partial}{\partial y} y^g = y^{(-1) + g}\cdot g |
1,263 | \cos(2\cdot X) = 1 - 2\cdot \sin^2(X) = 2\cdot \cos^2\left(X\right) + (-1) |
38,953 | \dfrac{10!}{10^{10}} = \dfrac{9!}{10^9} |
28,725 | \left(x + 1\right)^n*(x + 1)^n = (x + 1)^{2*n} |
10,354 | 2z^2 + 8z + 6 = 2(z^2 + 4z + 3) = 2(z + 3) (z + 1) |
-30,299 | 2\cdot \pi - \pi/4 = \frac74\cdot \pi |
14,815 | 0 \lt 9 + 3 \cdot z^2 + z \cdot 12 \Rightarrow z^2 + 4 \cdot z + 3 \gt 0 |
-1,950 | \pi \cdot \frac{1}{12} \cdot 37 = 17/12 \cdot \pi + 5/3 \cdot \pi |
15,888 | 2017 = 44^2 + 9^2 = \left(-44\right)^2 + 9^2 = ... |
10,681 | x + \frac1x = x + \left(-1\right) + 1 + \frac{1}{x} \geq (x + (-1))/x + \dfrac1x + 1 |
-20,642 | \dfrac{1}{8 + k\cdot 6}\cdot (6\cdot k + 8)\cdot (-4/3) = \frac{1}{18\cdot k + 24}\cdot (-k\cdot 24 + 32\cdot (-1)) |
25,567 | x^2 - 3\cdot x + \frac94 = (x + h)^2 = x^2 + 2\cdot h\cdot x + h^2 |
7,399 | 56 = -3\cdot 62 + 242 |
-9,908 | 0.01 \cdot \left(-35\right) = -35/100 = -0.35 |
18,570 | y^k \cdot y^h = y^{k + h} |
-20,789 | \frac{48 (-1) - n\cdot 8}{18 + 3n} = \frac{1}{n + 6}(n + 6) (-8/3) |
-20,285 | \dfrac{1}{1} \times \dfrac{z - 8}{z - 8} = \dfrac{z - 8}{z - 8} |
-2,743 | \sqrt{3} \cdot \left(1 + 2 + 4\right) = 7 \cdot \sqrt{3} |
-15,793 | -\frac{8}{10} + 1 = \dfrac{1}{10} \cdot 2 |
11,293 | -35 yc - c\cdot 2 + 35 b = -35 (cy + b) - 2c |
10,047 | \tfrac{1}{2^{32}}(2^{32} + (-1)) = 1 - \frac{1}{2^{32}} |
28,225 | 0 \neq c = c^{1 + 0} = c\times c^0 |
15,901 | 4 + 6\cdot n = 2\cdot (n\cdot 3 + 2) |
18,152 | 120 - x\cdot 3 \gt 0 \Rightarrow x \lt 40 |
-1,367 | 1/\left(9*9/7\right) = \frac19*7/9 |
26,872 | E[Q_{r - j} \cdot Q_{r - j}\cdot Q_r \cdot Q_r] = E[Q_{-j + r} \cdot Q_{-j + r}]\cdot E[Q_r \cdot Q_r] |
25,960 | \frac{2^\chi}{2^k} = 2^{-k + \chi} |
23,383 | 4/52 = \frac{4}{51}*48/52 + \frac{1}{52}*4*3/51 |
9,375 | \tan\left(\frac{\pi}{12}\right) = -\sqrt{3} + 2 |
3,729 | \frac{B^2}{4} + \left(-1\right) = (2 + B)\cdot (2\cdot (-1) + B)/4 |
-4,933 | 3.78 \cdot 10 = \frac{3.78}{10^6} \cdot 10 = \frac{1}{10^5} \cdot 3.78 |
-10,617 | 3 = 30 t + 30 (-1) + 15 = 30 t + 15 (-1) |
-22,366 | 18\times (-1) + x^2 - 3\times x = (6\times (-1) + x)\times \left(3 + x\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.