id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-22,283 | y \times y - y\times 3 + 70\times (-1) = (7 + y)\times (y + 10\times \left(-1\right)) |
46,399 | 1800 = 15*4*30 |
15,050 | \sqrt{128} = \sqrt{11^2 + 7} \approx 11 + \frac{1}{22} \cdot 7 |
14,201 | \frac{Ex L}{Ex T} TEx = TEx/(TxE) xE L |
-5,850 | \dfrac{1}{y^2 + y\cdot 17 + 72} = \frac{1}{(9 + y)\cdot \left(y + 8\right)} |
25,857 | 2 \cdot 2 \cdot 109 = 436 |
19,439 | z\cdot k + l\cdot x = 1 \Rightarrow l\cdot x = -z\cdot k + 1 |
14,100 | |-c_l + c_x| = |c_l - c_x| |
-1,688 | 5/12 \pi - \frac145 \pi = -\frac165 \pi |
30,847 | 60 = 150/5 \cdot \left(3 + (-1)\right) |
-18,253 | \frac{r \cdot (r + 7(-1))}{(r + 2(-1)) \left(r + 7\left(-1\right)\right)} = \frac{1}{r^2 - 9r + 14}(-7r + r^2) |
-20,531 | (28 + 70 \cdot n)/(-63) = \tfrac{1}{7} \cdot 7 \cdot \tfrac{1}{-9} \cdot (4 + n \cdot 10) |
-27,832 | \frac{\mathrm{d}}{\mathrm{d}z} (-3\cot{z}) = -3\frac{\mathrm{d}}{\mathrm{d}z} \cot{z} = 3\csc^2{z} |
23,225 | x \cdot 17 + y \cdot 17 = 9 \cdot x + y \cdot 5 + 4 \cdot \left(x \cdot 2 + 3 \cdot y\right) |
-2,584 | 8 \cdot \sqrt{3} = \sqrt{3} \cdot \left(3 + 5\right) |
13,363 | x_l \cdot x_j = x_j \cdot x_l |
-4,057 | x^2 \cdot x \cdot 4 = 4 \cdot x^3 |
5,068 | E(T) + E(Z) = E(T + Z) |
34,763 | 42^2 + 163*(-1) = 1 * 1 + 40^2 |
-29,600 | d/dy y^n = y^{(-1) + n}\cdot n |
14,299 | 3!\cdot {4 \choose 1}\cdot {6 \choose 2}\cdot {5 \choose 2} = 3600 |
-25,860 | \frac{x^5}{x^3} = x^{5 + 3 \cdot (-1)} = x \cdot x |
893 | 259^2 = 27 \cdot 24 \cdot 24 + 227^2 |
-19,269 | \frac{1/7*5}{1/7} = \frac{7}{1}*\frac{5}{7} |
6,503 | 5 - \sqrt{5} \cdot 2 + 1 = \left((-1) + \sqrt{5}\right)^2 |
-16,647 | 2\cdot t = 2\cdot t\cdot 3\cdot t + 2\cdot t\cdot \left(-5\right) = 6\cdot t^2 - 10\cdot t = 6\cdot t^2 - 10\cdot t |
34,361 | ge = eg |
246 | \left(-1\right) + 4*(y + 1) = y*4 + 3 |
-6,254 | \frac{24}{6(y + 3) (6(-1) + y)} = \tfrac166*\frac{4}{(3 + y) (6(-1) + y)} |
-4,725 | -\frac{3}{2\left(-1\right) + y} + \frac{5}{y + 5} = \dfrac{y*2 + 25 (-1)}{10 (-1) + y^2 + 3y} |
41,730 | 1000 = 6\cdot 166 + 4 |
20,486 | 168 = 6\binom{8}{6} |
28,660 | \frac{2}{4 - x} - \frac{1}{4 - x} \cdot \sqrt{x} = \dfrac{1}{\sqrt{x} + 2} |
21,552 | 1 + 2 + 3 + ... + x = (x + 1) \cdot x/2 |
44,317 | \cos\left(z\right) + \cos\left(z\cdot 2\right) + \cos(3\cdot z) + \dots + \cos(l\cdot z) = \sin(\frac12\cdot l\cdot z)\cdot \csc(\frac{1}{2}\cdot z)\cdot \cos(\frac{1}{2}\cdot \left(l + 1\right)\cdot z) |
-20,597 | \tfrac{5}{5} \cdot \frac{1}{\left(-1\right) + 6 \cdot t} \cdot (4 \cdot (-1) + 8 \cdot t) = \frac{20 \cdot \left(-1\right) + 40 \cdot t}{30 \cdot t + 5 \cdot (-1)} |
22,454 | f_1^2 - f_1 f_2*2 + f_2^2 = \left(f_1 - f_2\right)^2 |
7,366 | E\left[Y' \cdot x\right] = \sqrt{E\left[Y'^2\right] \cdot E\left[x \cdot x\right]} |
7,874 | 1 + 2*\cos{2*x_i} = 1 + 2*(1 - 2*\sin^2{x_i}) = \frac{\sin{3*x_i}}{\sin{x_i}} |
-10,365 | -50 = 4 - 25\cdot f + 10 = -25\cdot f + 14 |
4,382 | x = 5 + 5 \cdot j \implies x = \left(j + 2 \cdot (-1)\right) \cdot 5 + 5 \cdot 3 |
34,043 | 6 = 3 \cdot 2! |
30,225 | \frac{4}{7}\cdot \dfrac36 = \frac{1}{7}\cdot 2 |
5,450 | \frac{-v + 1}{1 - v^3} = \frac{1}{v^2 + 1 + v} |
28,463 | \tan(h) = \tan(2 \cdot \frac{h}{2}) = \frac{1}{1 - \tan^2\left(h/2\right)} \cdot 2 \cdot \tan(\frac{h}{2}) |
325 | x*3*d = 3*x*d |
-10,551 | -\frac{1}{4(-1) + 4q}5 \cdot 5/5 = -\tfrac{1}{q \cdot 20 + 20 (-1)}25 |
14,235 | x^6 - 7 \times x^3 + 8 \times (-1) = (x + 1) \times (1 + x^2 - x) \times (x^2 + x \times 2 + 4) \times (2 \times (-1) + x) |
-11,523 | -20 + 5 + 25 i = -15 + i \cdot 25 |
24,843 | g^2 - 3\cdot g + 19\cdot (-1) = (7 + g)^2 - (g + 4)\cdot 17 |
3,684 | \sqrt{\left(-1\right) \times \left(-1\right)} = \sqrt{\left(-1\right)^2} = |-1| = 1 |
6,943 | \frac{\pi}{6} - \pi/4 = \tfrac{\pi*(-1)}{12} |
10,588 | \cos(x - \beta) = \cos(x)\cdot \cos\left(\beta\right) + \sin\left(\beta\right)\cdot \sin(x) |
19,934 | 2^b\cdot a - 2^d\cdot c = 2^b\cdot (a - 2^{d - b}\cdot c) |
-7,741 | \frac{2 + 26 i}{-3i + 5} = \frac{3i + 5}{5 + 3i} \dfrac{1}{5 - i\cdot 3}(2 + 26 i) |
23,671 | 18 = 2\cdot 1 \cdot 1 + 4^2 |
751 | (2^x + 1)*(2^{x + (-1)} + (-1)) = (-1) + {2^x \choose 2} |
30,749 | 35 + 10\cdot \left(-1\right) = 25 |
1,006 | x + 3 - 4 \cdot \sqrt{x + (-1)} = x + (-1) - 4 \cdot \sqrt{x + \left(-1\right)} + 4 = (\sqrt{x + \left(-1\right)} + 2 \cdot (-1))^2 |
-26,639 | 16*y^6 + 81*(-1) = (9*(-1) + y^3*4)*\left(4*y * y^2 + 9\right) |
3,553 | (x + 1) \cdot (x + 1) \cdot (x + 1) = 1 + x^3 + 3\cdot x^2 + x\cdot 3 |
27,287 | 8(-1) + 30 + 7(-1) = 15 |
25,424 | (W - d\times I)^n\times v = (W - d\times I)^{n + (-1)}\times (W\times v - d\times v) = (W - d\times I)^{n + \left(-1\right)}\times W\times v - (W - d\times I)^{n + (-1)}\times d\times v |
25,859 | (x^2)^f = (1/x)^f = x^{f + (-1)} |
21,738 | 3 (\frac{1}{3} + x) (x + 2 (-1)) = (x + 2 (-1)) (3 x + 1) |
25,826 | k^2 + k = (k + 1)\cdot k = 2\cdot {k + 1 \choose 2} |
37,979 | 3^{n \cdot 20} = 9^{n \cdot 10} |
54,284 | -29 + 3\cdot 12 = -29 + 36 = 7 |
11,057 | g + a = \frac{1}{a^2 - a\cdot g + g^2}\cdot (a \cdot a^2 + g^3) |
22,018 | -f_2^2 + f_1 * f_1 = \left(f_1 - f_2\right) (f_1 + f_2) |
-18,269 | \frac{1}{-3*m + m^2}*(m * m + 2*m + 15*(-1)) = \dfrac{1}{(3*(-1) + m)*m}*(m + 5)*\left(m + 3*(-1)\right) |
43,047 | \dfrac{1}{4}\cdot 5! = 30 |
24,594 | \frac{x \cdot m^3}{\left(m + 1\right)^3} = \dfrac{1}{(1/m + 1)^3} \cdot x |
40,387 | 29*3448275862069 = 10^{14} + 1 |
34,561 | \frac{1}{2} + 1/2 = 2/2 = 1 |
-21,879 | \dfrac{1}{6} + \dfrac{8}{12} = {\dfrac{1 \times 2}{6 \times 2}} + {\dfrac{8 \times 1}{12 \times 1}} = {\dfrac{2}{12}} + {\dfrac{8}{12}} = \dfrac{{2} + {8}}{12} = \dfrac{10}{12} |
7,318 | \frac{1}{2} \cdot (\sqrt{5} + 3) = \frac{\sqrt{5}}{2} + 3/2 |
34,253 | 65 = 3 \cdot \left(-1\right) + 3^4 + 13 \cdot (-1) |
28,393 | 36 \cdot \left(-1\right) + 54 = 18 |
314 | a^3 + x * x^2 + g * g^2 - 3gx a = \left(a + x + g\right) (a^2 + x^2 + g * g - ax - gx - ga) |
-3,570 | \frac{4*\frac{1}{5}}{q^3} = \frac{4}{5*q^3} |
15,181 | 27 (-1) + x^3 = (x + 3\left(-1\right)) (9 + x^2 + x\cdot 3) |
30,561 | \tan^2{y} + 1 = \sec^2{y} = \dfrac{1}{\cos^2{y}} |
-20,769 | \frac{1}{y*36 + 60 (-1)}(-30 y + 50) = -\frac{1}{6}5 \dfrac{6y + 10 (-1)}{10 (-1) + 6y} |
13,090 | x = 5(7x_2 + e) + 1 = 35 x_2 + 5e + 1 |
625 | |-x + z| = |z + x| \implies |z - x|^2 = |z + x|^2 |
-19,743 | \frac{30}{9}\cdot 1 = \dfrac{30}{9} |
12,490 | \tfrac{1}{H_1} \cdot H_2 = \frac{H_2}{H_1} |
-2,105 | -\dfrac{1}{3} \cdot 5 \cdot \pi = \frac{\pi}{6} - \pi \cdot \dfrac{11}{6} |
-15,339 | \frac{1}{s^5\cdot \dfrac{q^5}{s^{25}}} = \dfrac{\left(1/s\right)^5}{(\dfrac{1}{s^5}\cdot q)^5} |
-27,689 | \frac{d}{dz} \cos(z) = -\sin\left(z\right) |
-12,866 | 10*(-1) + 23 = 13 |
9,862 | \left(7/6\right)^4 = \frac{1}{1296} \cdot 2401 |
2,561 | Q_2 + Q_3 + Q_1 = Q_3 + Q_1 + Q_2 |
1,872 | P(x) = (x + (-1) - 2 \cdot i) \cdot (x + (-1) + 2 \cdot i) = x^2 - 2 \cdot x + 5 |
3,500 | \frac1i = \dfrac{1}{2} rightarrow i = 2 |
3,350 | \sin^3(R) = \sin^2(R)\cdot \sin(R) = (1 - \cos^2(R))\cdot \sin(R) |
8,391 | (w + x)^2 = 1/q + q \Rightarrow |w + x| = \sqrt{q + \dfrac1q} |
27,944 | \frac{\varepsilon^2 \cdot 5^{\dfrac13}}{\varepsilon \cdot 5^{1/3}} = \varepsilon |
-25,222 | x^{m + (-1)}\cdot m = d/dx x^m |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.