id
int64
-30,985
55.9k
text
stringlengths
5
437k
-22,283
y \times y - y\times 3 + 70\times (-1) = (7 + y)\times (y + 10\times \left(-1\right))
46,399
1800 = 15*4*30
15,050
\sqrt{128} = \sqrt{11^2 + 7} \approx 11 + \frac{1}{22} \cdot 7
14,201
\frac{Ex L}{Ex T} TEx = TEx/(TxE) xE L
-5,850
\dfrac{1}{y^2 + y\cdot 17 + 72} = \frac{1}{(9 + y)\cdot \left(y + 8\right)}
25,857
2 \cdot 2 \cdot 109 = 436
19,439
z\cdot k + l\cdot x = 1 \Rightarrow l\cdot x = -z\cdot k + 1
14,100
|-c_l + c_x| = |c_l - c_x|
-1,688
5/12 \pi - \frac145 \pi = -\frac165 \pi
30,847
60 = 150/5 \cdot \left(3 + (-1)\right)
-18,253
\frac{r \cdot (r + 7(-1))}{(r + 2(-1)) \left(r + 7\left(-1\right)\right)} = \frac{1}{r^2 - 9r + 14}(-7r + r^2)
-20,531
(28 + 70 \cdot n)/(-63) = \tfrac{1}{7} \cdot 7 \cdot \tfrac{1}{-9} \cdot (4 + n \cdot 10)
-27,832
\frac{\mathrm{d}}{\mathrm{d}z} (-3\cot{z}) = -3\frac{\mathrm{d}}{\mathrm{d}z} \cot{z} = 3\csc^2{z}
23,225
x \cdot 17 + y \cdot 17 = 9 \cdot x + y \cdot 5 + 4 \cdot \left(x \cdot 2 + 3 \cdot y\right)
-2,584
8 \cdot \sqrt{3} = \sqrt{3} \cdot \left(3 + 5\right)
13,363
x_l \cdot x_j = x_j \cdot x_l
-4,057
x^2 \cdot x \cdot 4 = 4 \cdot x^3
5,068
E(T) + E(Z) = E(T + Z)
34,763
42^2 + 163*(-1) = 1 * 1 + 40^2
-29,600
d/dy y^n = y^{(-1) + n}\cdot n
14,299
3!\cdot {4 \choose 1}\cdot {6 \choose 2}\cdot {5 \choose 2} = 3600
-25,860
\frac{x^5}{x^3} = x^{5 + 3 \cdot (-1)} = x \cdot x
893
259^2 = 27 \cdot 24 \cdot 24 + 227^2
-19,269
\frac{1/7*5}{1/7} = \frac{7}{1}*\frac{5}{7}
6,503
5 - \sqrt{5} \cdot 2 + 1 = \left((-1) + \sqrt{5}\right)^2
-16,647
2\cdot t = 2\cdot t\cdot 3\cdot t + 2\cdot t\cdot \left(-5\right) = 6\cdot t^2 - 10\cdot t = 6\cdot t^2 - 10\cdot t
34,361
ge = eg
246
\left(-1\right) + 4*(y + 1) = y*4 + 3
-6,254
\frac{24}{6(y + 3) (6(-1) + y)} = \tfrac166*\frac{4}{(3 + y) (6(-1) + y)}
-4,725
-\frac{3}{2\left(-1\right) + y} + \frac{5}{y + 5} = \dfrac{y*2 + 25 (-1)}{10 (-1) + y^2 + 3y}
41,730
1000 = 6\cdot 166 + 4
20,486
168 = 6\binom{8}{6}
28,660
\frac{2}{4 - x} - \frac{1}{4 - x} \cdot \sqrt{x} = \dfrac{1}{\sqrt{x} + 2}
21,552
1 + 2 + 3 + ... + x = (x + 1) \cdot x/2
44,317
\cos\left(z\right) + \cos\left(z\cdot 2\right) + \cos(3\cdot z) + \dots + \cos(l\cdot z) = \sin(\frac12\cdot l\cdot z)\cdot \csc(\frac{1}{2}\cdot z)\cdot \cos(\frac{1}{2}\cdot \left(l + 1\right)\cdot z)
-20,597
\tfrac{5}{5} \cdot \frac{1}{\left(-1\right) + 6 \cdot t} \cdot (4 \cdot (-1) + 8 \cdot t) = \frac{20 \cdot \left(-1\right) + 40 \cdot t}{30 \cdot t + 5 \cdot (-1)}
22,454
f_1^2 - f_1 f_2*2 + f_2^2 = \left(f_1 - f_2\right)^2
7,366
E\left[Y' \cdot x\right] = \sqrt{E\left[Y'^2\right] \cdot E\left[x \cdot x\right]}
7,874
1 + 2*\cos{2*x_i} = 1 + 2*(1 - 2*\sin^2{x_i}) = \frac{\sin{3*x_i}}{\sin{x_i}}
-10,365
-50 = 4 - 25\cdot f + 10 = -25\cdot f + 14
4,382
x = 5 + 5 \cdot j \implies x = \left(j + 2 \cdot (-1)\right) \cdot 5 + 5 \cdot 3
34,043
6 = 3 \cdot 2!
30,225
\frac{4}{7}\cdot \dfrac36 = \frac{1}{7}\cdot 2
5,450
\frac{-v + 1}{1 - v^3} = \frac{1}{v^2 + 1 + v}
28,463
\tan(h) = \tan(2 \cdot \frac{h}{2}) = \frac{1}{1 - \tan^2\left(h/2\right)} \cdot 2 \cdot \tan(\frac{h}{2})
325
x*3*d = 3*x*d
-10,551
-\frac{1}{4(-1) + 4q}5 \cdot 5/5 = -\tfrac{1}{q \cdot 20 + 20 (-1)}25
14,235
x^6 - 7 \times x^3 + 8 \times (-1) = (x + 1) \times (1 + x^2 - x) \times (x^2 + x \times 2 + 4) \times (2 \times (-1) + x)
-11,523
-20 + 5 + 25 i = -15 + i \cdot 25
24,843
g^2 - 3\cdot g + 19\cdot (-1) = (7 + g)^2 - (g + 4)\cdot 17
3,684
\sqrt{\left(-1\right) \times \left(-1\right)} = \sqrt{\left(-1\right)^2} = |-1| = 1
6,943
\frac{\pi}{6} - \pi/4 = \tfrac{\pi*(-1)}{12}
10,588
\cos(x - \beta) = \cos(x)\cdot \cos\left(\beta\right) + \sin\left(\beta\right)\cdot \sin(x)
19,934
2^b\cdot a - 2^d\cdot c = 2^b\cdot (a - 2^{d - b}\cdot c)
-7,741
\frac{2 + 26 i}{-3i + 5} = \frac{3i + 5}{5 + 3i} \dfrac{1}{5 - i\cdot 3}(2 + 26 i)
23,671
18 = 2\cdot 1 \cdot 1 + 4^2
751
(2^x + 1)*(2^{x + (-1)} + (-1)) = (-1) + {2^x \choose 2}
30,749
35 + 10\cdot \left(-1\right) = 25
1,006
x + 3 - 4 \cdot \sqrt{x + (-1)} = x + (-1) - 4 \cdot \sqrt{x + \left(-1\right)} + 4 = (\sqrt{x + \left(-1\right)} + 2 \cdot (-1))^2
-26,639
16*y^6 + 81*(-1) = (9*(-1) + y^3*4)*\left(4*y * y^2 + 9\right)
3,553
(x + 1) \cdot (x + 1) \cdot (x + 1) = 1 + x^3 + 3\cdot x^2 + x\cdot 3
27,287
8(-1) + 30 + 7(-1) = 15
25,424
(W - d\times I)^n\times v = (W - d\times I)^{n + (-1)}\times (W\times v - d\times v) = (W - d\times I)^{n + \left(-1\right)}\times W\times v - (W - d\times I)^{n + (-1)}\times d\times v
25,859
(x^2)^f = (1/x)^f = x^{f + (-1)}
21,738
3 (\frac{1}{3} + x) (x + 2 (-1)) = (x + 2 (-1)) (3 x + 1)
25,826
k^2 + k = (k + 1)\cdot k = 2\cdot {k + 1 \choose 2}
37,979
3^{n \cdot 20} = 9^{n \cdot 10}
54,284
-29 + 3\cdot 12 = -29 + 36 = 7
11,057
g + a = \frac{1}{a^2 - a\cdot g + g^2}\cdot (a \cdot a^2 + g^3)
22,018
-f_2^2 + f_1 * f_1 = \left(f_1 - f_2\right) (f_1 + f_2)
-18,269
\frac{1}{-3*m + m^2}*(m * m + 2*m + 15*(-1)) = \dfrac{1}{(3*(-1) + m)*m}*(m + 5)*\left(m + 3*(-1)\right)
43,047
\dfrac{1}{4}\cdot 5! = 30
24,594
\frac{x \cdot m^3}{\left(m + 1\right)^3} = \dfrac{1}{(1/m + 1)^3} \cdot x
40,387
29*3448275862069 = 10^{14} + 1
34,561
\frac{1}{2} + 1/2 = 2/2 = 1
-21,879
\dfrac{1}{6} + \dfrac{8}{12} = {\dfrac{1 \times 2}{6 \times 2}} + {\dfrac{8 \times 1}{12 \times 1}} = {\dfrac{2}{12}} + {\dfrac{8}{12}} = \dfrac{{2} + {8}}{12} = \dfrac{10}{12}
7,318
\frac{1}{2} \cdot (\sqrt{5} + 3) = \frac{\sqrt{5}}{2} + 3/2
34,253
65 = 3 \cdot \left(-1\right) + 3^4 + 13 \cdot (-1)
28,393
36 \cdot \left(-1\right) + 54 = 18
314
a^3 + x * x^2 + g * g^2 - 3gx a = \left(a + x + g\right) (a^2 + x^2 + g * g - ax - gx - ga)
-3,570
\frac{4*\frac{1}{5}}{q^3} = \frac{4}{5*q^3}
15,181
27 (-1) + x^3 = (x + 3\left(-1\right)) (9 + x^2 + x\cdot 3)
30,561
\tan^2{y} + 1 = \sec^2{y} = \dfrac{1}{\cos^2{y}}
-20,769
\frac{1}{y*36 + 60 (-1)}(-30 y + 50) = -\frac{1}{6}5 \dfrac{6y + 10 (-1)}{10 (-1) + 6y}
13,090
x = 5(7x_2 + e) + 1 = 35 x_2 + 5e + 1
625
|-x + z| = |z + x| \implies |z - x|^2 = |z + x|^2
-19,743
\frac{30}{9}\cdot 1 = \dfrac{30}{9}
12,490
\tfrac{1}{H_1} \cdot H_2 = \frac{H_2}{H_1}
-2,105
-\dfrac{1}{3} \cdot 5 \cdot \pi = \frac{\pi}{6} - \pi \cdot \dfrac{11}{6}
-15,339
\frac{1}{s^5\cdot \dfrac{q^5}{s^{25}}} = \dfrac{\left(1/s\right)^5}{(\dfrac{1}{s^5}\cdot q)^5}
-27,689
\frac{d}{dz} \cos(z) = -\sin\left(z\right)
-12,866
10*(-1) + 23 = 13
9,862
\left(7/6\right)^4 = \frac{1}{1296} \cdot 2401
2,561
Q_2 + Q_3 + Q_1 = Q_3 + Q_1 + Q_2
1,872
P(x) = (x + (-1) - 2 \cdot i) \cdot (x + (-1) + 2 \cdot i) = x^2 - 2 \cdot x + 5
3,500
\frac1i = \dfrac{1}{2} rightarrow i = 2
3,350
\sin^3(R) = \sin^2(R)\cdot \sin(R) = (1 - \cos^2(R))\cdot \sin(R)
8,391
(w + x)^2 = 1/q + q \Rightarrow |w + x| = \sqrt{q + \dfrac1q}
27,944
\frac{\varepsilon^2 \cdot 5^{\dfrac13}}{\varepsilon \cdot 5^{1/3}} = \varepsilon
-25,222
x^{m + (-1)}\cdot m = d/dx x^m