id
int64
-30,985
55.9k
text
stringlengths
5
437k
20,812
(y + (-1))*\left(y + 1\right) = y^2 + (-1)
-25,024
\int \tfrac{1}{\left(4 z\right) \left(4 z\right) + 1} 4\,dz = \int \frac{1}{1 + 16 z^2} 4\,dz
29,280
2\cdot \pi/5\cdot 1.25 = \frac{2}{5}\cdot \pi\cdot \frac14\cdot 5 = \pi/2
7,754
( a, r b) = ( a r, b) = r*\left( a, b\right)
8,824
\sin\left(2y\right) = \sin^2(y)
22,534
1/12 = \frac{1}{3 \times 4}
-9,487
n*2*3 - 2*2*5 n n = 6n - n^2*20
-10,302
-\frac{1}{5} \cdot 17 = -\frac{17}{5}
22,368
2 = 4\left(-6\right) + 26
26,330
G^p = G^p
23,484
\frac{1}{2^{1/2}} = \sin{π/4}
15,885
728 = 2*125 + 5*71 + 2*41 + 30 + 11
1,201
(x * x + y^2) * (x * x + y^2) = 64 \Rightarrow (y*x)^2*2 + x^4 + y^4 = 64
8,743
C^2 = 0\Longrightarrow 0 = C
16,915
\cos\left((\pi - z)/2\right) = \sin(\dfrac{z}{2})
34,599
\left(y + 1\right) \cdot 3 = 3 \cdot y + 1 + 2
-18,476
3l + 7 = 5(l + 3(-1)) = 5l + 15 (-1)
8,543
100 \cdot z = b + z + 10 \cdot h \Rightarrow (h \cdot 10 + b)/99 = z
40,407
\dfrac43 = \dfrac{1}{4 + \left(-1\right)} \cdot (11 + 7 \cdot (-1))
8,312
(1 + 0) \cdot \frac{1}{1 + 0}/2 = 1/2
34,444
3 = 3 \cdot (3 \cdot \left(-1\right) + 4)
30,678
x^2 = x^2 - 2x + 1 + (-1) + 2x = (x + (-1))^2 + 2x + (-1)
11,902
b^{2^{l + 1}} + \left(-1\right) = \left(b^{2^l}\right)^2 + (-1) = (b^{2^l} + (-1)) (b^{2^l} + 1)
14,605
s \cdot \sqrt{2} - s = s \cdot \sqrt{2} - q \cdot \sqrt{2} = \left(s - q\right) \cdot \sqrt{2}
21,433
2^2 \cdot 2 + 6^3 + 10^3 = 1224
25,674
2/27 = \frac{1}{3 \cdot 3} \cdot 2/3
-7,109
\frac{1}{11}*2*\frac{1}{12}*3 = \frac{1}{22}
26,809
\left(y + 1\right) (y + \left(-1\right)) = \left(-1\right) + y^2
13,878
3/\left(7\cdot \tfrac{1}{9}\right) = 27/7
20,748
1/u + 1/v = \frac{v}{u v} + u/(u v) = (v + u)/(u v)
17,150
(a\cdot d)^2 = (a\cdot d) \cdot (a\cdot d)
-18,615
-\dfrac{34}{19} = -68/38
4,945
f_1*f_2 = 1 = f_2*f_1
13,231
h_2\cdot h_1 + f\cdot h_2 = h_2\cdot (f + h_1)
24,748
l!^{\frac1l} = (1 \times 2 \times 3 \times \ldots \times l)^{1/l} \leq (1 + 2 + 3 + \ldots + l)/l
32,220
n \cdot x = k \Rightarrow n = k/x
12,228
x^2 + y^2*4 + s^2 = x^2 + y^2*2 + s^2 + 2*y^2
-20,872
2/9\cdot \frac{r + 10}{10 + r} = \dfrac{20 + 2\cdot r}{90 + 9\cdot r}
-6,725
\frac{80}{100} + 9/100 = \tfrac{9}{100} + 8/10
-20,813
(3\cdot (-1) - z\cdot 9)/\left(-5\right)\cdot 7/7 = \dfrac{1}{-35}\cdot (21\cdot \left(-1\right) - 63\cdot z)
29,036
1/6 = 3/18 = 1/18 + \frac{2}{18} = 1/9 + \frac{1}{18}
12,987
\Lambda_n^i*x^{m*n}*\Lambda_m^\delta = x^{m*n}*\Lambda_m^\delta*\Lambda_n^i
19,393
21 = (3 - 1/5)\cdot \left(-\frac{1}{2} + 5\right)\cdot (2 - 1/3)
-2,733
(16 \cdot 6)^{1 / 2} - (9 \cdot 6)^{\frac{1}{2}} + 6^{\frac{1}{2}} = 96^{\frac{1}{2}} - 54^{\tfrac{1}{2}} + 6^{1 / 2}
5,821
-25*55/25 + 80 + 25*\left(-1\right) = 0
1,827
(n + 1)^3 + 2\cdot (n + 1) = n^3 + 3\cdot n \cdot n + 5\cdot n + 3 = n^3 + 2\cdot n + 3\cdot (n^2 + n + 1)
-569
e^{4\cdot 11\cdot \pi\cdot i/12} = (e^{i\cdot \pi\cdot 11/12})^4
2,532
3^k + (-1) + 2 \times 3^k = 3^{k + 1} + (-1)
20,801
6^{1/3} = 2^{1/3}\cdot 3^{\dfrac13}
-20,661
\frac{1}{(-36) \cdot z} \cdot (72 \cdot (-1) + z \cdot 18) = 9/9 \cdot \frac{1}{z \cdot \left(-4\right)} \cdot (8 \cdot (-1) + 2 \cdot z)
-24,892
\dfrac{2}{15} = \frac{1}{12 \cdot \pi} \cdot s \cdot 12 \cdot \pi = s
5,993
(y_0^{1/2} + y^{1/2}) \cdot (y^{1/2} - y_0^{1/2}) = -y_0 + y
32,902
1 = \left(-1\right) + 3 + \left(-1\right)
20,019
\cos{Q} = \frac{1}{\sqrt{1 + \tan^2{Q}}} < \dfrac{1}{\sqrt{1 + Q^2}}
4,240
k^6 = (k k)^3
33,966
(n^r)^s = (n^s)^r = n^{r s}
-696
\frac{\pi}{2} = \pi\cdot \frac{25}{2} - 12\cdot \pi
9,049
\pi\cdot i/2 = \pi\cdot i\cdot 2/4
-605
(e^{7\cdot π\cdot i/6})^{17} = e^{17\cdot 7\cdot i\cdot π/6}
8,229
-\frac{1}{2^k} + 1 = \frac{1}{2} + \tfrac{1}{2^2} + \dots + \frac{1}{2^k}
17,825
1 + z = \frac{z^2 + \left(-1\right)}{(-1) + z}
-11,626
-8i + 8 = 0 + 8 - i \cdot 8
22,134
g*\dfrac{d}{g} = d/g*g
26,930
\dfrac{1}{2}(\sqrt{5} + 1) = \frac{1}{2} + \sqrt{5}/2
-22,109
\frac{16}{12} = \frac{4}{3}
25,374
\dfrac12\cdot (\left(-1\right) + 2\cdot j + 1)\cdot ((-1) + 2) = j
-22,208
t * t - 9*t + 18 = (6*(-1) + t)*\left(t + 3*(-1)\right)
25,356
\sqrt{i} = x \Rightarrow x \cdot x = i
-5,243
0.59\cdot 10^2 = 10^{2 + 0\cdot (-1)}\cdot 0.59
-155
9*8*7 = \frac{9!}{(9 + 3*\left(-1\right))!}
54,969
a \cdot z^{\frac{1}{2}} - \left(S + c\right) \cdot \frac{1}{z^{1 / 2}} \cdot c = a \cdot z^{1 / 2} - (S + c) \cdot \frac{1}{z^{1 / 2} \cdot z^{1 / 2}} \cdot z^{\dfrac{1}{2}} \cdot c = z^{1 / 2} \cdot (a - (S + c) \cdot \tfrac{c}{z})
-6,522
\frac{2}{3 \cdot \left(x + 4 \cdot (-1)\right)} = \frac{2}{12 \cdot (-1) + 3 \cdot x}
29,518
3 * 3*2*5*7 = 630
9,032
-\cot(y) = \cot(-y + \pi)
-9,367
8*n^2 - 12*n = -n*2*2*3 + n*2*2*2*n
12,751
\frac{z^2}{y \cdot y} = \tfrac21 \Rightarrow 2 = z^2,1 = y^2
-20,854
\dfrac{1}{10\cdot (-1) + r}\cdot \left(4\cdot r + 40\cdot (-1)\right) = \frac{1}{r + 10\cdot (-1)}\cdot (10\cdot (-1) + r)\cdot 4/1
23,889
1 = \sqrt{0.8 \times 0.8 + 0.6^2}
-1,126
\frac{2}{7}*(-3/8) = ((-3)*\frac{1}{8})/(1/2*7)
1,445
1 + i^2 + i = 0\Longrightarrow 1 + i^2 = -i
24,005
y \cdot z = e\Longrightarrow z = y = e
18,749
ffA/f = Af
17,932
f' \times g = f' \times b \times z + b^2 \Rightarrow -g/b \times f' + b + f' \times z = 0
9,863
e^{A + B*i} = e^{i*B}*e^A
42,630
16807 = 10 + 1527*11
52,150
\dfrac{4\cdot x_1^3 - 4\cdot x_1 + (-1)}{4\cdot x_2^3 - 4\cdot x_2 + (-1)} = -1/(-1) = \frac{3\cdot x_1^4 - 2\cdot x_1^2}{3\cdot x_2^4 - 2\cdot x_2^2}
2,532
2\cdot 3^x + 3^x + (-1) = (-1) + 3^{x + 1}
608
\dfrac{1}{x^{1/2}} = x^{-\tfrac{1}{2}}
21,262
y\cdot N\cdot U\cdot N/(y\cdot N) = y\cdot N\cdot U\cdot N\cdot N/y = y\cdot \frac{U}{y}\cdot N
22,606
\sin{\pi\cdot \frac{1}{600}\cdot 720\cdot n} = \sin{n\cdot (-4/5 + 2)\cdot \pi}
14,644
\frac{n \cdot n}{n + 1} > \dfrac{n^2 + (-1)}{n + 1} = \frac{1}{n + 1}\cdot (n + 1)\cdot \left(n + \left(-1\right)\right) = n + (-1)
30,342
\frac{5}{8} \times \pi = \pi - \frac38 \times \pi
30,156
(W + (-1))\cdot (1 + W) + 8\cdot 3 = 23 + W^2
-15,916
-7 \cdot \tfrac{9}{10} + \frac{5}{10} = -58/10
-29,096
(-2) \cdot \left(-6\right) = 12
31,456
{22 + 4 + (-1) \choose 4 + \left(-1\right)} = 2300 = 144 + 2*y \Rightarrow y = 1078
5,575
-2016\cdot x + X^3 - 2016\cdot X^2 + x\cdot X = (X + 2016\cdot (-1))\cdot (X^2 + x)
31,798
1 = -106 \cdot 32 + 87 \cdot 39
20,915
x_i \cdot E_i = E_i \cdot x_i
-16,904
-8 = -15 t^2 + 3 t - 8*5 t - -8 = -15 t^2 + 3 t - 40 t + 8