id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
20,812 | (y + (-1))*\left(y + 1\right) = y^2 + (-1) |
-25,024 | \int \tfrac{1}{\left(4 z\right) \left(4 z\right) + 1} 4\,dz = \int \frac{1}{1 + 16 z^2} 4\,dz |
29,280 | 2\cdot \pi/5\cdot 1.25 = \frac{2}{5}\cdot \pi\cdot \frac14\cdot 5 = \pi/2 |
7,754 | ( a, r b) = ( a r, b) = r*\left( a, b\right) |
8,824 | \sin\left(2y\right) = \sin^2(y) |
22,534 | 1/12 = \frac{1}{3 \times 4} |
-9,487 | n*2*3 - 2*2*5 n n = 6n - n^2*20 |
-10,302 | -\frac{1}{5} \cdot 17 = -\frac{17}{5} |
22,368 | 2 = 4\left(-6\right) + 26 |
26,330 | G^p = G^p |
23,484 | \frac{1}{2^{1/2}} = \sin{π/4} |
15,885 | 728 = 2*125 + 5*71 + 2*41 + 30 + 11 |
1,201 | (x * x + y^2) * (x * x + y^2) = 64 \Rightarrow (y*x)^2*2 + x^4 + y^4 = 64 |
8,743 | C^2 = 0\Longrightarrow 0 = C |
16,915 | \cos\left((\pi - z)/2\right) = \sin(\dfrac{z}{2}) |
34,599 | \left(y + 1\right) \cdot 3 = 3 \cdot y + 1 + 2 |
-18,476 | 3l + 7 = 5(l + 3(-1)) = 5l + 15 (-1) |
8,543 | 100 \cdot z = b + z + 10 \cdot h \Rightarrow (h \cdot 10 + b)/99 = z |
40,407 | \dfrac43 = \dfrac{1}{4 + \left(-1\right)} \cdot (11 + 7 \cdot (-1)) |
8,312 | (1 + 0) \cdot \frac{1}{1 + 0}/2 = 1/2 |
34,444 | 3 = 3 \cdot (3 \cdot \left(-1\right) + 4) |
30,678 | x^2 = x^2 - 2x + 1 + (-1) + 2x = (x + (-1))^2 + 2x + (-1) |
11,902 | b^{2^{l + 1}} + \left(-1\right) = \left(b^{2^l}\right)^2 + (-1) = (b^{2^l} + (-1)) (b^{2^l} + 1) |
14,605 | s \cdot \sqrt{2} - s = s \cdot \sqrt{2} - q \cdot \sqrt{2} = \left(s - q\right) \cdot \sqrt{2} |
21,433 | 2^2 \cdot 2 + 6^3 + 10^3 = 1224 |
25,674 | 2/27 = \frac{1}{3 \cdot 3} \cdot 2/3 |
-7,109 | \frac{1}{11}*2*\frac{1}{12}*3 = \frac{1}{22} |
26,809 | \left(y + 1\right) (y + \left(-1\right)) = \left(-1\right) + y^2 |
13,878 | 3/\left(7\cdot \tfrac{1}{9}\right) = 27/7 |
20,748 | 1/u + 1/v = \frac{v}{u v} + u/(u v) = (v + u)/(u v) |
17,150 | (a\cdot d)^2 = (a\cdot d) \cdot (a\cdot d) |
-18,615 | -\dfrac{34}{19} = -68/38 |
4,945 | f_1*f_2 = 1 = f_2*f_1 |
13,231 | h_2\cdot h_1 + f\cdot h_2 = h_2\cdot (f + h_1) |
24,748 | l!^{\frac1l} = (1 \times 2 \times 3 \times \ldots \times l)^{1/l} \leq (1 + 2 + 3 + \ldots + l)/l |
32,220 | n \cdot x = k \Rightarrow n = k/x |
12,228 | x^2 + y^2*4 + s^2 = x^2 + y^2*2 + s^2 + 2*y^2 |
-20,872 | 2/9\cdot \frac{r + 10}{10 + r} = \dfrac{20 + 2\cdot r}{90 + 9\cdot r} |
-6,725 | \frac{80}{100} + 9/100 = \tfrac{9}{100} + 8/10 |
-20,813 | (3\cdot (-1) - z\cdot 9)/\left(-5\right)\cdot 7/7 = \dfrac{1}{-35}\cdot (21\cdot \left(-1\right) - 63\cdot z) |
29,036 | 1/6 = 3/18 = 1/18 + \frac{2}{18} = 1/9 + \frac{1}{18} |
12,987 | \Lambda_n^i*x^{m*n}*\Lambda_m^\delta = x^{m*n}*\Lambda_m^\delta*\Lambda_n^i |
19,393 | 21 = (3 - 1/5)\cdot \left(-\frac{1}{2} + 5\right)\cdot (2 - 1/3) |
-2,733 | (16 \cdot 6)^{1 / 2} - (9 \cdot 6)^{\frac{1}{2}} + 6^{\frac{1}{2}} = 96^{\frac{1}{2}} - 54^{\tfrac{1}{2}} + 6^{1 / 2} |
5,821 | -25*55/25 + 80 + 25*\left(-1\right) = 0 |
1,827 | (n + 1)^3 + 2\cdot (n + 1) = n^3 + 3\cdot n \cdot n + 5\cdot n + 3 = n^3 + 2\cdot n + 3\cdot (n^2 + n + 1) |
-569 | e^{4\cdot 11\cdot \pi\cdot i/12} = (e^{i\cdot \pi\cdot 11/12})^4 |
2,532 | 3^k + (-1) + 2 \times 3^k = 3^{k + 1} + (-1) |
20,801 | 6^{1/3} = 2^{1/3}\cdot 3^{\dfrac13} |
-20,661 | \frac{1}{(-36) \cdot z} \cdot (72 \cdot (-1) + z \cdot 18) = 9/9 \cdot \frac{1}{z \cdot \left(-4\right)} \cdot (8 \cdot (-1) + 2 \cdot z) |
-24,892 | \dfrac{2}{15} = \frac{1}{12 \cdot \pi} \cdot s \cdot 12 \cdot \pi = s |
5,993 | (y_0^{1/2} + y^{1/2}) \cdot (y^{1/2} - y_0^{1/2}) = -y_0 + y |
32,902 | 1 = \left(-1\right) + 3 + \left(-1\right) |
20,019 | \cos{Q} = \frac{1}{\sqrt{1 + \tan^2{Q}}} < \dfrac{1}{\sqrt{1 + Q^2}} |
4,240 | k^6 = (k k)^3 |
33,966 | (n^r)^s = (n^s)^r = n^{r s} |
-696 | \frac{\pi}{2} = \pi\cdot \frac{25}{2} - 12\cdot \pi |
9,049 | \pi\cdot i/2 = \pi\cdot i\cdot 2/4 |
-605 | (e^{7\cdot π\cdot i/6})^{17} = e^{17\cdot 7\cdot i\cdot π/6} |
8,229 | -\frac{1}{2^k} + 1 = \frac{1}{2} + \tfrac{1}{2^2} + \dots + \frac{1}{2^k} |
17,825 | 1 + z = \frac{z^2 + \left(-1\right)}{(-1) + z} |
-11,626 | -8i + 8 = 0 + 8 - i \cdot 8 |
22,134 | g*\dfrac{d}{g} = d/g*g |
26,930 | \dfrac{1}{2}(\sqrt{5} + 1) = \frac{1}{2} + \sqrt{5}/2 |
-22,109 | \frac{16}{12} = \frac{4}{3} |
25,374 | \dfrac12\cdot (\left(-1\right) + 2\cdot j + 1)\cdot ((-1) + 2) = j |
-22,208 | t * t - 9*t + 18 = (6*(-1) + t)*\left(t + 3*(-1)\right) |
25,356 | \sqrt{i} = x \Rightarrow x \cdot x = i |
-5,243 | 0.59\cdot 10^2 = 10^{2 + 0\cdot (-1)}\cdot 0.59 |
-155 | 9*8*7 = \frac{9!}{(9 + 3*\left(-1\right))!} |
54,969 | a \cdot z^{\frac{1}{2}} - \left(S + c\right) \cdot \frac{1}{z^{1 / 2}} \cdot c = a \cdot z^{1 / 2} - (S + c) \cdot \frac{1}{z^{1 / 2} \cdot z^{1 / 2}} \cdot z^{\dfrac{1}{2}} \cdot c = z^{1 / 2} \cdot (a - (S + c) \cdot \tfrac{c}{z}) |
-6,522 | \frac{2}{3 \cdot \left(x + 4 \cdot (-1)\right)} = \frac{2}{12 \cdot (-1) + 3 \cdot x} |
29,518 | 3 * 3*2*5*7 = 630 |
9,032 | -\cot(y) = \cot(-y + \pi) |
-9,367 | 8*n^2 - 12*n = -n*2*2*3 + n*2*2*2*n |
12,751 | \frac{z^2}{y \cdot y} = \tfrac21 \Rightarrow 2 = z^2,1 = y^2 |
-20,854 | \dfrac{1}{10\cdot (-1) + r}\cdot \left(4\cdot r + 40\cdot (-1)\right) = \frac{1}{r + 10\cdot (-1)}\cdot (10\cdot (-1) + r)\cdot 4/1 |
23,889 | 1 = \sqrt{0.8 \times 0.8 + 0.6^2} |
-1,126 | \frac{2}{7}*(-3/8) = ((-3)*\frac{1}{8})/(1/2*7) |
1,445 | 1 + i^2 + i = 0\Longrightarrow 1 + i^2 = -i |
24,005 | y \cdot z = e\Longrightarrow z = y = e |
18,749 | ffA/f = Af |
17,932 | f' \times g = f' \times b \times z + b^2 \Rightarrow -g/b \times f' + b + f' \times z = 0 |
9,863 | e^{A + B*i} = e^{i*B}*e^A |
42,630 | 16807 = 10 + 1527*11 |
52,150 | \dfrac{4\cdot x_1^3 - 4\cdot x_1 + (-1)}{4\cdot x_2^3 - 4\cdot x_2 + (-1)} = -1/(-1) = \frac{3\cdot x_1^4 - 2\cdot x_1^2}{3\cdot x_2^4 - 2\cdot x_2^2} |
2,532 | 2\cdot 3^x + 3^x + (-1) = (-1) + 3^{x + 1} |
608 | \dfrac{1}{x^{1/2}} = x^{-\tfrac{1}{2}} |
21,262 | y\cdot N\cdot U\cdot N/(y\cdot N) = y\cdot N\cdot U\cdot N\cdot N/y = y\cdot \frac{U}{y}\cdot N |
22,606 | \sin{\pi\cdot \frac{1}{600}\cdot 720\cdot n} = \sin{n\cdot (-4/5 + 2)\cdot \pi} |
14,644 | \frac{n \cdot n}{n + 1} > \dfrac{n^2 + (-1)}{n + 1} = \frac{1}{n + 1}\cdot (n + 1)\cdot \left(n + \left(-1\right)\right) = n + (-1) |
30,342 | \frac{5}{8} \times \pi = \pi - \frac38 \times \pi |
30,156 | (W + (-1))\cdot (1 + W) + 8\cdot 3 = 23 + W^2 |
-15,916 | -7 \cdot \tfrac{9}{10} + \frac{5}{10} = -58/10 |
-29,096 | (-2) \cdot \left(-6\right) = 12 |
31,456 | {22 + 4 + (-1) \choose 4 + \left(-1\right)} = 2300 = 144 + 2*y \Rightarrow y = 1078 |
5,575 | -2016\cdot x + X^3 - 2016\cdot X^2 + x\cdot X = (X + 2016\cdot (-1))\cdot (X^2 + x) |
31,798 | 1 = -106 \cdot 32 + 87 \cdot 39 |
20,915 | x_i \cdot E_i = E_i \cdot x_i |
-16,904 | -8 = -15 t^2 + 3 t - 8*5 t - -8 = -15 t^2 + 3 t - 40 t + 8 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.