id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
32,603 | G_\pi \cdot U = G_\pi \cdot U |
-1,909 | 13/4 \pi = \pi \frac134 + 23/12 \pi |
-6,211 | \frac{1}{(3*(-1) + t)*5} = \frac{1}{5*t + 15*(-1)} |
97 | i = \cos{\frac12 \pi} + \sin{\pi/2} i |
44,256 | (\dfrac{1}{2}\cdot n + 1)\cdot \left(n + 1\right) = \frac{1}{2}\cdot (n + 1)\cdot (2\cdot \tfrac12\cdot n + 2) = \frac{1}{2}\cdot (n + 1)\cdot (n + 2) |
5,235 | 48 + x^2*24 + 72 x = 24 (2 + x) (x + 1) |
-27,711 | 6 \cdot \sin{x} = \frac{\mathrm{d}}{\mathrm{d}x} (-6 \cdot \cos{x}) |
43,194 | \binom{30}{27} = \frac{30!}{27! \cdot \left(30 + 27 \cdot (-1)\right)!} = 4060 |
21,101 | \left(a^2 + f^2\right)\cdot 5 = (2\cdot f + a)^2 + (2\cdot a - f)^2 |
21,438 | \dfrac{13}{204} = 13*\frac{1}{51}/4 |
-20,576 | -\frac{1}{5} \cdot 8 \cdot \frac{2 \cdot n + 2 \cdot \left(-1\right)}{2 \cdot n + 2 \cdot (-1)} = \frac{-n \cdot 16 + 16}{n \cdot 10 + 10 \cdot (-1)} |
21,607 | 123 \cdot 345 x = 123 \cdot 345 x |
10,221 | \frac{z + (-1)}{3 + z} = \frac{1}{z^2 + z + 6 \times \left(-1\right)} \times (2 + z^2 - z \times 3) |
21,520 | \left(4 + 8\cdot (-1)\right) \cdot \left(4 + 8\cdot (-1)\right) \cdot \left(4 + 8\cdot (-1)\right) = \left(-4\right)^3 = -64 |
13,239 | (1 + z)^2 + (z + x)^2 + ((-1) + y)^2 = x^2 + y^2 + 2\cdot z^2 + x\cdot z\cdot 2 - y\cdot 2 + 2\cdot z + 2 |
6,835 | 1 - 5 \cdot (x^2 \cdot 16 + 24 \cdot x + 9) = 1 - 80 \cdot x \cdot x - 120 \cdot x + 45 \cdot (-1) |
26,978 | \frac{1}{2}\cdot (0 + 4 + 4) = 4 |
7,543 | \tan{50} = \tan(45 + 5) = \frac{1}{1 - \tan{45}*\tan{5}}*(\tan{45} + \tan{5}) |
-12,182 | 4/45 = s/(18*\pi)*18*\pi = s |
14,985 | 4*x^2 + 4*x + 5 = (2*x + 1)^2 + (-1) + 5 = (2*x + 1)^2 + 4 |
19,421 | \cos\left(-L\right) = \cos(L) |
24,780 | 6 + 4^x \cdot 3 = 3 \cdot (4^x + 2) |
12,570 | -x^9 + 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 = (-x^3 + 1) \cdot (1 - x^5) \cdot \left(-x + 1\right) |
24,986 | \left(3/4\right)^n = \frac{3^n}{4^n} |
6,225 | \sin(\dfrac13\pi) = 3^{\frac{1}{2}}/2 |
-19,052 | \frac{7}{24} = \tfrac{1}{81 \cdot \pi} \cdot A_x \cdot 81 \cdot \pi = A_x |
-29,560 | \dfrac2x x^3 + \frac7x = \dfrac1x \left(2 x x x + 7\right) |
30,618 | 149/32 = \frac{8500 \cdot \left(-1\right) + 23400}{8500 \cdot (-1) + 11700} |
4,662 | \tfrac16 = \frac{1}{426} \cdot 71 |
-7,274 | \dfrac27\cdot \dfrac{1}{5} = \frac{1}{35}\cdot 2 |
22,527 | 3 = \left(-1\right) (-3) |
-10,755 | \dfrac{1}{8 + 4\cdot x}\cdot (x\cdot 6 + 4\cdot (-1)) = \frac{3\cdot x + 2\cdot \left(-1\right)}{2\cdot x + 4}\cdot \frac{1}{2}\cdot 2 |
21,123 | (1 + 2^q)\cdot 3 = 2^{1 + 2 n} + 1 \implies 2^{2 n} - 3\cdot 2^{(-1) + q} = 1 |
15,893 | 2 \cdot (n + (-1)) = 2 \cdot (n + 2 \cdot (-1)) + 2 |
-3,648 | \frac{l^4*120}{144*l^3} = \dfrac{l^4}{l^3}*\frac{120}{144} |
-22,261 | (a + 3\cdot \left(-1\right))\cdot (4 + a) = 12\cdot (-1) + a^2 + a |
2,603 | 0 = 1 + s + s^2 = s \cdot s \cdot (1 + \frac{1}{s} + \frac{1}{s^2}) |
7,799 | \varnothing = [1, 2] = 2 \cdot ( 1, 1) |
48,707 | 1 + 9 * 9 + 9 = 91 |
18,605 | \dfrac{1}{2} \cdot ((-1) + 2011) = 1005 |
5,436 | (5 - 1)! = 4*3*2*1 = 24 |
13,363 | p_i*p_k = p_k*p_i |
-20,914 | 5/5 \frac{1}{(-1)*5 y} \left(-6 y + 9\right) = \frac{45 - y*30}{(-25) y} |
-20,285 | \frac{x + 8 \cdot \left(-1\right)}{x + 8 \cdot (-1)} = \frac{1}{8 \cdot (-1) + x} \cdot \left(8 \cdot (-1) + x\right)/1 |
8,593 | \frac13 = \tfrac{3}{3^2} |
-24,370 | \frac{1}{6 + 8} 70 = 70/14 = \frac{70}{14} = 5 |
21,364 | 24 = ((8*9^{\frac{1}{2}})^{10/5})^{\frac{1}{2}} |
17,983 | \sin{l} = \sin(\pi - l) |
-23,271 | 1/4 = -\frac34 + 1 |
5,511 | h'\cdot k'\cdot h\cdot k = k\cdot h\cdot h'\cdot k' |
40,289 | \dfrac{150}{10} = 15 |
18,744 | 3/4 + (-\frac{1}{2} + z^2)^2 = 1 + z^4 - z \cdot z |
40,329 | -80,000 - 220,000=-300,000 |
5,792 | \Sigma_k*x^k = \Sigma_k*x^{(-1) + k}*x |
22,417 | s * s * s = s^2*s |
17,179 | v = (z\cdot 2 + (-1))^{1/3} \Rightarrow z\cdot 2 + (-1) = v^3 |
13,956 | y_1 + f_1 \cdot y_0 = y_0 \cdot f_1 + y_1 |
48,163 | e^x = z \implies x = e^z |
-3,893 | \dfrac{1}{t^4}\cdot t = \frac{1}{t\cdot t\cdot t\cdot t}\cdot t = \dfrac{1}{t^3} |
-4,923 | 0.53 \cdot 10^2 = 0.53 \cdot 10^{1 - -1} |
204 | 9\cdot x^2 = (x\cdot 3) \cdot (x\cdot 3) |
-6,907 | 8\cdot 12\cdot 8 = 768 |
-6,306 | 5/5\cdot \frac{4}{(z + 6\cdot \left(-1\right))\cdot (z + 7\cdot (-1))} = \frac{20}{5\cdot (z + 7\cdot (-1))\cdot (z + 6\cdot (-1))} |
12,145 | a\cdot x = 18 \Rightarrow x = \frac{18}{a} |
4,451 | 1 \neq t, n^{1 / 2} = r/t \Rightarrow n = \frac{r^2}{t^2} |
27,496 | \sin(\pi*y) = \cos(\pi*y/2)*\sin(\frac{\pi*y}{2})*2 |
6,008 | (\dfrac14 \cdot 2) \cdot (\dfrac14 \cdot 2) \cdot (\dfrac14 \cdot 2) = 1/8 |
17,410 | -(2 \cdot (-1) + z) = -z + 2 |
-2,993 | \sqrt{2} \cdot 2 = \sqrt{2} \cdot (1 + 5 + 4 \cdot (-1)) |
11,112 | 5\cdot 3 - 5\cdot 2 = 5\cdot (3 + 2(-1)) |
-20,959 | 2/2\cdot (-\frac12) = -\dfrac{1}{4}\cdot 2 |
-9,237 | 2\cdot 2\cdot 2\cdot 3 - q\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3 = -72\cdot q + 24 |
-26,135 | 7*\left(e^7 - 1/exp(14)\right) = -7/exp(14) + 7*e^7 |
4,542 | \frac{y + 0(-1)}{x + 0(-1)} = y/x |
23,883 | \left(120 = 6 \cdot a + a \cdot 4 \Rightarrow 12 = a\right) \Rightarrow a \cdot a = 144 |
13,613 | 1 = 2.5 + \sin(x) \implies \sin(x) = -1.5 |
-569 | (e^{\tfrac{11}{12}i\pi})^4 = e^{4\dfrac{11}{12}i\pi} |
15,162 | \sin(D + G) = \sin(D)\cdot \cos(G) + \cos(D)\cdot \sin(G) |
47,591 | -|x| = x = x |
19,657 | \left\{2, 1, 0, 4, 3, \ldots\right\} = \mathbb{N} |
-12,338 | 3 \cdot 6^{1/2} = 54^{1/2} |
-2,386 | (-4)^3 = \left(-4\right) \cdot (-4) \cdot (-4) = 16 \cdot (-4) = -64 |
-16,700 | -3 = -3 \cdot (-2 \cdot m) - 21 = 6 \cdot m - 21 = 6 \cdot m + 21 \cdot (-1) |
18,562 | a^5 = b^4 \implies a = \left(\frac{b}{a}\right)^4 |
27,890 | 0 = x^2 - x + (-1) \Rightarrow x = (1 ± \sqrt{5})/2 |
-1,349 | -1/4*\frac54 = \dfrac{(-1)*5}{4*4} = -\dfrac{5}{16} |
2,294 | 2^1\cdot 3^2\cdot 3^4\cdot 2^5\cdot 4^3 = 2^6\cdot 3^6\cdot 4^2 \cdot 4 |
16,934 | 1 + z*y = 1 + y*z |
8,587 | \tfrac{\left(\sqrt{24}\right)^2}{8^2} = \frac{24}{64} = 6/16 |
3,206 | z \cdot z^2 + 6\cdot z^2 + 4\cdot z + 2 = z^3 - 2\cdot z + (-1) + 6\cdot z^2 + 6\cdot z + 3 = z \cdot z^2 - 2\cdot z + (-1) |
12,195 | 2 = 10^{1/2} \cdot (h + b \cdot 10^{1/2}) = h \cdot 10^{1/2} + 10 \cdot b |
-5,859 | \dfrac{4}{x^2 - 5\cdot x + 14\cdot (-1)} = \frac{1}{(x + 2)\cdot (x + 7\cdot (-1))}\cdot 4 |
28,707 | 4 + 8 + 2 \cdot \left(-1\right) = 10 |
1,303 | \sin(x*2) = \frac{\tan(x)*2}{\tan^2(x) + 1}*1 |
609 | l=l-l^2\Rightarrow l=0 |
8,801 | 2 * 2*4*3 = 48 |
-3,265 | -\sqrt{2}\cdot \sqrt{9} + \sqrt{2}\cdot \sqrt{25} = 5\cdot \sqrt{2} - 3\cdot \sqrt{2} |
-20,474 | \frac{6 + s}{s\times 8 + 48} = \frac18\times 1 |
11,291 | 10^{f_1}*10^{f_2} = 10^{f_2 + f_1} |
21,361 | \frac{z^2 + (-1)}{z + (-1)} = \dfrac{1}{z + (-1)}*(z + 1)*\left(z + (-1)\right) = z + 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.