id
int64
-30,985
55.9k
text
stringlengths
5
437k
-20,242
8/8\cdot \frac{1}{10 - 2\cdot Z}\cdot (7 + Z) = \frac{1}{80 - Z\cdot 16}\cdot \left(Z\cdot 8 + 56\right)
-20,164
(15 - 12\times x)/(-21) = \tfrac{1}{-7}\times (-x\times 4 + 5)\times \dfrac33
-2,208
4/15 = -\frac{1}{15} 2 + \tfrac{1}{15} 6
13,122
-i\cdot 0 + x - i = -i + x
5,747
x^6 + (-1) = (x^3 + 1)\cdot \left(x^3 + (-1)\right) = (x \cdot x \cdot x + 1)\cdot (x + \left(-1\right))\cdot (x^2 + x^1 + x^0)
20,137
\frac{\sqrt{k}}{2} = \frac{\sqrt{k}\cdot 2}{2} - \sqrt{k}/2
9,354
c_1 c_2 = \frac14((c_1 + c_2)^2 - (-c_1 + c_2)^2)
-20,821
\frac{1}{7}\cdot 7\cdot \frac{p + 5}{p\cdot 3 + 10\cdot (-1)} = \frac{35 + p\cdot 7}{21\cdot p + 70\cdot \left(-1\right)}
17,100
x + x \cdot x + x\cdot 6 + 6 = (x + 6) (x + 1)
7,561
\tfrac{1}{2^k} + 1 + \left(-1\right) = \frac{1}{2^k}
23,490
b = a\cdot x \Rightarrow x = b/a
-5,086
8.9*10^{(-4)*\left(-1\right) - 3} = 8.9*10^1
29,216
\frac{1}{\left(1 - 7\right)^3}\cdot (-7 + (-1)) = \frac{1}{27}
31,124
(x + (-1))!/2 = \frac{x!}{x\cdot 2}
-10,869
\tfrac{1}{10}*100 = 10
-5,467
\tfrac{1}{2(x + 7(-1))} = \dfrac{1}{x*2 + 14 (-1)}
-5,656
\frac{1}{(p + 8*(-1))*4}*4 = \dfrac{4}{4*p + 32*(-1)}
26,352
\tfrac{5}{6} \cdot \frac{1}{6} = \frac{5}{36}
-19,702
\frac17 \cdot 15 = \frac{3}{7} \cdot 5
8,784
789264 = 504 \cdot \left(-1\right) + 789768
28,365
(g - b)^2 = \left(g - b\right)\cdot (g - b) = g^2 - 2\cdot g\cdot b + b \cdot b
-4,689
-\frac{4}{z + (-1)} - \frac{2}{3 + z} = \frac{1}{z^2 + z\cdot 2 + 3\cdot (-1)}\cdot (10\cdot (-1) - 6\cdot z)
29,374
(n + 1)^2 = n \cdot n + 2\cdot n + 1
-425
e^{13*\frac{7}{4}*\pi*i} = (e^{\frac{7*\pi*i}{4}})^{13}
-10,456
-\frac{1}{s^2*10}\left(14 (-1) + 2s\right) = \frac{2}{2} (-\frac{1}{5s^2}(7(-1) + s))
-19,079
2/15 = \frac{F_s}{100 \cdot \pi} \cdot 100 \cdot \pi = F_s
274
\binom{1/2}{k} = \left(2(1/2 + (-1)) (\frac12 + 2(-1)) \ldots*(\dfrac12 - k + 1)\right)^{-1}/k!
-20,204
\dfrac{t + 3}{8\times t + 24} = \frac18\times 1
30,149
( 4, 1) \left( 1, 1\right) = \left( 4, 1 + 4\right) = [4, 5]
43,091
|y + \left(-1\right)| = -(y + (-1)) = 1 - y
-26,637
(x + 5) (x + 5(-1)) = x^2 - 5^2
739
\frac{-2 + 3\cdot (-1)}{5 - -10} = -\dfrac{5}{15} = -\frac{1}{3}
18,672
y \cdot x + y \cdot x = x \cdot y
31,756
1/(HY) = \frac{1}{HY}
-2,634
\sqrt{25} \cdot \sqrt{3}-\sqrt{9} \cdot \sqrt{3}+\sqrt{16} \cdot \sqrt{3} = 5\sqrt{3}-3\sqrt{3}+4\sqrt{3}
4,416
\dfrac{2\cdot (q + 263)}{2\cdot q + (-1)} = \frac{2\cdot q + 526}{2\cdot q + (-1)} = 1 + \dfrac{1}{2\cdot q + (-1)}\cdot 527
35,971
\dotsm \dotsm = \dotsm * \dotsm
42,338
\binom{5}{4} + (4 + 4 \cdot 3) \cdot 5 + 5 \cdot 4 + 5 = 110
27,116
(c^2 + b^2 + bc)/3 = (\tfrac12(b + c))^2 + (-c + b)^2/12
6,671
\sin(a + \pi*2) = \sin(a)
-20,862
-\frac{1}{6} \cdot \frac{6 \cdot (-1) + 3 \cdot z}{6 \cdot (-1) + 3 \cdot z} = \dfrac{1}{z \cdot 18 + 36 \cdot (-1)} \cdot (6 - 3 \cdot z)
29,390
15 = 10 \cdot 3/2
20,333
1/3 = \dfrac{24}{72}
37,806
(2^2)^3 = 2^{2 \times 3} = 2^6
18,128
\left(2^{1 + 2\cdot 2} + 1\right)\cdot 2/3 + (2\cdot 2 + 1)^2 = 47
-3,998
84/14 \frac{1}{a^5}a^3 = \frac{84}{14 a^5}a^3
30,115
280/13 = 7/3*2/13*60
35,367
4^3 - 6 \times 4^2 - 2 \times 4 + 40 = 64 + 96 \times (-1) + 8 \times \left(-1\right) + 40 = 0
26,901
18 = {4 \choose 2}\times {3 \choose 2}
30,489
y + 3 \lt 0 rightarrow y < -3
2,733
\frac{1 + x^2}{(-1) + x} = -\frac{1}{-x + 1}(x^2 + 1)
5,253
C \cap x = (C \cap x) \cap (B \cup B') = (C \cap (B \cap x)) \cup (C \cap \left(B' \cap x\right))
8,716
\sin{x_2}\cdot \cos{x_1} + \cos{x_2}\cdot \sin{x_1} = \sin\left(x_1 + x_2\right)
11,073
E \cdot Z = 50,\frac12 \cdot 299 = E \cdot C,C \cdot Z = \dfrac{291}{2} \Rightarrow E \cdot Z + C \cdot E + C \cdot Z = 345
-2,518
\sqrt{11} = \sqrt{11} \cdot (2 \cdot \left(-1\right) + 3)
104
\dfrac{15}{48} = \dfrac{1}{6} + \frac{1}{12} + 1/24 + \dfrac{1}{48}
345
2\cdot x/2 - c = -c + x
39,701
101 = 10^2 + 1 \cdot 1
21,987
21 + 23.1\cdot \frac{1}{77}\cdot 16 = 77\cdot 0.3\cdot \frac{1}{77}\cdot 16 + 21
-4,415
(4 + x) (x + 1) = x^2 + x*5 + 4
-25,863
\dfrac{1}{g^6}\cdot g^{10} = g^{10 + 6\cdot (-1)} = g^4
21,970
\frac{a}{\left(1 - a\right)^2} = a + 2 \cdot a^2 + 3 \cdot a^3 + \cdots
12,261
\sqrt{-6} (\sqrt{-6} (-1))/6 = 1
20,040
s + X^3 \cdot (1 - s) - X^2 = (-s + (1 - s) X \cdot X - Xs) (X + (-1))
49,697
\int\limits_1^∞ \frac{1}{x^x}\,\mathrm{d}x = \int\limits_1^2 \left(\frac{1}{x^x} + \int_2^∞ \dfrac{1}{x^x}\,\mathrm{d}x\right)\,\mathrm{d}x \leq \int_1^2 (\frac{1}{x^x} + \int\limits_2^∞ \tfrac{1}{x^2}\,\mathrm{d}x)\,\mathrm{d}x
18,267
2 \cdot ( 3, 4) = [6, 8] = \emptyset
13,178
(d^{g_2})^{g_1} = d^{g_2\cdot g_1} = d^{g_1\cdot g_2} = (d^{g_1})^{g_2}
23,131
x^2 + \left(5\cdot (-1) + \dfrac{x}{2}\right)^2 = (4\cdot (-1) + x)^2 + (3 + \frac{1}{2}\cdot x) \cdot (3 + \frac{1}{2}\cdot x)
15,412
h \cdot U = U = U \cdot h
31,695
x^2 \coloneqq x*x
17,056
\mathbb{E}[X_n]\cdot \mathbb{E}[B_n] = \mathbb{E}[B_n\cdot X_n]
8,561
0 = \frac{1}{i*2}(-\pi i*2 + \pi i*2)
4,660
\left(f + b\right)^2 = b^2 + f^2 + 2 \times f \times b
-4,148
\frac{96 n^3}{n \cdot 12} 1 = 96/12 \frac{n^3}{n}
3,440
2.5 = \frac{1}{4}(4 + 1 + 2 + 3)
21,250
-16\cdot b + a^2\cdot 4 + 4\cdot b^2 + 64 - 4\cdot b\cdot a - a\cdot 16 = 3\cdot (a - b)^2 + (8\cdot (-1) + a + b)^2
20,572
\frac{d}{dt} \left(\sin(x) + x\right) = \frac{dx}{dt} + \frac{dx}{dt}\cdot \cos(x)
29,776
\frac{1}{9} \cdot 99 + d + (-1) = 10 + d
9,628
3 + n \cdot 2 = n + 1 + n + 2
6,523
-i\pi \cdot 2 = i\pi \cdot 4 - 6\pi i
19,645
b \cdot 6 + 18 \cdot a = 6 \cdot (a \cdot 3 + b)
8,420
J^n = J^{(-1) + n} \cdot J^1
5,265
1 + b + b^2 + b^3 + \ldots + b^l = \dfrac{-b^{1 + l} + 1}{-b + 1}
-9,134
-5\cdot 2\cdot 2\cdot 2 + p\cdot 2\cdot 2\cdot 5 = 40 (-1) + 20 p
-2,838
5^{1 / 2}\cdot 9^{1 / 2} + 5^{1 / 2} = 3\cdot 5^{\frac{1}{2}} + 5^{\dfrac{1}{2}}
5,811
\frac{1}{2}*(l^2 + l) = l + (-l + l^2)/2
16
(1 - p)*0 + p = p
21,316
1900 = \binom{20}{1}\cdot \binom{5}{4}\cdot 19
29,358
14.5 = \cosh(y) + 5 \implies 9.5 = \cosh(y)
-5,773
\dfrac{1}{x\cdot 3 + 27} = \frac{1}{3(9 + x)}
-7,109
\tfrac{1}{22} = 3/12 \cdot \frac{1}{11} \cdot 2
-2,977
\sqrt{10}\cdot (5 + 3) = \sqrt{10}\cdot 8
11,712
6^{l + 1} + (-1) = 5*s + 5*6^l = 5*(s + 6^l)
813
1 - 2*x * x - x = \left(1 - 2*x\right)*\left(x + 1\right)
17,333
272 = 17 \cdot ((-1) + 17)
22,123
a \cdot a - d^2 = (a + d)\cdot (a - d) = 21 \Rightarrow (a + d)\cdot 3 = 21
28,306
\frac12 \cdot \sin(2 \cdot B) = \sin(B) \cdot \cos(B) = \frac{1}{\cos(0)} \cdot \cos(B + 0) \cdot \sin\left(B\right)
20,721
z \times d \times x = x \times d \times z
21,057
i = l + (-1) \Rightarrow \left\lfloor{\frac{1}{l} \cdot (i + 1)^2}\right\rfloor = l \gt l + (-1)
6,700
n + (-1) + n + 2 (-1) = n*2 + 3 (-1)