id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-20,242 | 8/8\cdot \frac{1}{10 - 2\cdot Z}\cdot (7 + Z) = \frac{1}{80 - Z\cdot 16}\cdot \left(Z\cdot 8 + 56\right) |
-20,164 | (15 - 12\times x)/(-21) = \tfrac{1}{-7}\times (-x\times 4 + 5)\times \dfrac33 |
-2,208 | 4/15 = -\frac{1}{15} 2 + \tfrac{1}{15} 6 |
13,122 | -i\cdot 0 + x - i = -i + x |
5,747 | x^6 + (-1) = (x^3 + 1)\cdot \left(x^3 + (-1)\right) = (x \cdot x \cdot x + 1)\cdot (x + \left(-1\right))\cdot (x^2 + x^1 + x^0) |
20,137 | \frac{\sqrt{k}}{2} = \frac{\sqrt{k}\cdot 2}{2} - \sqrt{k}/2 |
9,354 | c_1 c_2 = \frac14((c_1 + c_2)^2 - (-c_1 + c_2)^2) |
-20,821 | \frac{1}{7}\cdot 7\cdot \frac{p + 5}{p\cdot 3 + 10\cdot (-1)} = \frac{35 + p\cdot 7}{21\cdot p + 70\cdot \left(-1\right)} |
17,100 | x + x \cdot x + x\cdot 6 + 6 = (x + 6) (x + 1) |
7,561 | \tfrac{1}{2^k} + 1 + \left(-1\right) = \frac{1}{2^k} |
23,490 | b = a\cdot x \Rightarrow x = b/a |
-5,086 | 8.9*10^{(-4)*\left(-1\right) - 3} = 8.9*10^1 |
29,216 | \frac{1}{\left(1 - 7\right)^3}\cdot (-7 + (-1)) = \frac{1}{27} |
31,124 | (x + (-1))!/2 = \frac{x!}{x\cdot 2} |
-10,869 | \tfrac{1}{10}*100 = 10 |
-5,467 | \tfrac{1}{2(x + 7(-1))} = \dfrac{1}{x*2 + 14 (-1)} |
-5,656 | \frac{1}{(p + 8*(-1))*4}*4 = \dfrac{4}{4*p + 32*(-1)} |
26,352 | \tfrac{5}{6} \cdot \frac{1}{6} = \frac{5}{36} |
-19,702 | \frac17 \cdot 15 = \frac{3}{7} \cdot 5 |
8,784 | 789264 = 504 \cdot \left(-1\right) + 789768 |
28,365 | (g - b)^2 = \left(g - b\right)\cdot (g - b) = g^2 - 2\cdot g\cdot b + b \cdot b |
-4,689 | -\frac{4}{z + (-1)} - \frac{2}{3 + z} = \frac{1}{z^2 + z\cdot 2 + 3\cdot (-1)}\cdot (10\cdot (-1) - 6\cdot z) |
29,374 | (n + 1)^2 = n \cdot n + 2\cdot n + 1 |
-425 | e^{13*\frac{7}{4}*\pi*i} = (e^{\frac{7*\pi*i}{4}})^{13} |
-10,456 | -\frac{1}{s^2*10}\left(14 (-1) + 2s\right) = \frac{2}{2} (-\frac{1}{5s^2}(7(-1) + s)) |
-19,079 | 2/15 = \frac{F_s}{100 \cdot \pi} \cdot 100 \cdot \pi = F_s |
274 | \binom{1/2}{k} = \left(2(1/2 + (-1)) (\frac12 + 2(-1)) \ldots*(\dfrac12 - k + 1)\right)^{-1}/k! |
-20,204 | \dfrac{t + 3}{8\times t + 24} = \frac18\times 1 |
30,149 | ( 4, 1) \left( 1, 1\right) = \left( 4, 1 + 4\right) = [4, 5] |
43,091 | |y + \left(-1\right)| = -(y + (-1)) = 1 - y |
-26,637 | (x + 5) (x + 5(-1)) = x^2 - 5^2 |
739 | \frac{-2 + 3\cdot (-1)}{5 - -10} = -\dfrac{5}{15} = -\frac{1}{3} |
18,672 | y \cdot x + y \cdot x = x \cdot y |
31,756 | 1/(HY) = \frac{1}{HY} |
-2,634 | \sqrt{25} \cdot \sqrt{3}-\sqrt{9} \cdot \sqrt{3}+\sqrt{16} \cdot \sqrt{3} = 5\sqrt{3}-3\sqrt{3}+4\sqrt{3} |
4,416 | \dfrac{2\cdot (q + 263)}{2\cdot q + (-1)} = \frac{2\cdot q + 526}{2\cdot q + (-1)} = 1 + \dfrac{1}{2\cdot q + (-1)}\cdot 527 |
35,971 | \dotsm \dotsm = \dotsm * \dotsm |
42,338 | \binom{5}{4} + (4 + 4 \cdot 3) \cdot 5 + 5 \cdot 4 + 5 = 110 |
27,116 | (c^2 + b^2 + bc)/3 = (\tfrac12(b + c))^2 + (-c + b)^2/12 |
6,671 | \sin(a + \pi*2) = \sin(a) |
-20,862 | -\frac{1}{6} \cdot \frac{6 \cdot (-1) + 3 \cdot z}{6 \cdot (-1) + 3 \cdot z} = \dfrac{1}{z \cdot 18 + 36 \cdot (-1)} \cdot (6 - 3 \cdot z) |
29,390 | 15 = 10 \cdot 3/2 |
20,333 | 1/3 = \dfrac{24}{72} |
37,806 | (2^2)^3 = 2^{2 \times 3} = 2^6 |
18,128 | \left(2^{1 + 2\cdot 2} + 1\right)\cdot 2/3 + (2\cdot 2 + 1)^2 = 47 |
-3,998 | 84/14 \frac{1}{a^5}a^3 = \frac{84}{14 a^5}a^3 |
30,115 | 280/13 = 7/3*2/13*60 |
35,367 | 4^3 - 6 \times 4^2 - 2 \times 4 + 40 = 64 + 96 \times (-1) + 8 \times \left(-1\right) + 40 = 0 |
26,901 | 18 = {4 \choose 2}\times {3 \choose 2} |
30,489 | y + 3 \lt 0 rightarrow y < -3 |
2,733 | \frac{1 + x^2}{(-1) + x} = -\frac{1}{-x + 1}(x^2 + 1) |
5,253 | C \cap x = (C \cap x) \cap (B \cup B') = (C \cap (B \cap x)) \cup (C \cap \left(B' \cap x\right)) |
8,716 | \sin{x_2}\cdot \cos{x_1} + \cos{x_2}\cdot \sin{x_1} = \sin\left(x_1 + x_2\right) |
11,073 | E \cdot Z = 50,\frac12 \cdot 299 = E \cdot C,C \cdot Z = \dfrac{291}{2} \Rightarrow E \cdot Z + C \cdot E + C \cdot Z = 345 |
-2,518 | \sqrt{11} = \sqrt{11} \cdot (2 \cdot \left(-1\right) + 3) |
104 | \dfrac{15}{48} = \dfrac{1}{6} + \frac{1}{12} + 1/24 + \dfrac{1}{48} |
345 | 2\cdot x/2 - c = -c + x |
39,701 | 101 = 10^2 + 1 \cdot 1 |
21,987 | 21 + 23.1\cdot \frac{1}{77}\cdot 16 = 77\cdot 0.3\cdot \frac{1}{77}\cdot 16 + 21 |
-4,415 | (4 + x) (x + 1) = x^2 + x*5 + 4 |
-25,863 | \dfrac{1}{g^6}\cdot g^{10} = g^{10 + 6\cdot (-1)} = g^4 |
21,970 | \frac{a}{\left(1 - a\right)^2} = a + 2 \cdot a^2 + 3 \cdot a^3 + \cdots |
12,261 | \sqrt{-6} (\sqrt{-6} (-1))/6 = 1 |
20,040 | s + X^3 \cdot (1 - s) - X^2 = (-s + (1 - s) X \cdot X - Xs) (X + (-1)) |
49,697 | \int\limits_1^∞ \frac{1}{x^x}\,\mathrm{d}x = \int\limits_1^2 \left(\frac{1}{x^x} + \int_2^∞ \dfrac{1}{x^x}\,\mathrm{d}x\right)\,\mathrm{d}x \leq \int_1^2 (\frac{1}{x^x} + \int\limits_2^∞ \tfrac{1}{x^2}\,\mathrm{d}x)\,\mathrm{d}x |
18,267 | 2 \cdot ( 3, 4) = [6, 8] = \emptyset |
13,178 | (d^{g_2})^{g_1} = d^{g_2\cdot g_1} = d^{g_1\cdot g_2} = (d^{g_1})^{g_2} |
23,131 | x^2 + \left(5\cdot (-1) + \dfrac{x}{2}\right)^2 = (4\cdot (-1) + x)^2 + (3 + \frac{1}{2}\cdot x) \cdot (3 + \frac{1}{2}\cdot x) |
15,412 | h \cdot U = U = U \cdot h |
31,695 | x^2 \coloneqq x*x |
17,056 | \mathbb{E}[X_n]\cdot \mathbb{E}[B_n] = \mathbb{E}[B_n\cdot X_n] |
8,561 | 0 = \frac{1}{i*2}(-\pi i*2 + \pi i*2) |
4,660 | \left(f + b\right)^2 = b^2 + f^2 + 2 \times f \times b |
-4,148 | \frac{96 n^3}{n \cdot 12} 1 = 96/12 \frac{n^3}{n} |
3,440 | 2.5 = \frac{1}{4}(4 + 1 + 2 + 3) |
21,250 | -16\cdot b + a^2\cdot 4 + 4\cdot b^2 + 64 - 4\cdot b\cdot a - a\cdot 16 = 3\cdot (a - b)^2 + (8\cdot (-1) + a + b)^2 |
20,572 | \frac{d}{dt} \left(\sin(x) + x\right) = \frac{dx}{dt} + \frac{dx}{dt}\cdot \cos(x) |
29,776 | \frac{1}{9} \cdot 99 + d + (-1) = 10 + d |
9,628 | 3 + n \cdot 2 = n + 1 + n + 2 |
6,523 | -i\pi \cdot 2 = i\pi \cdot 4 - 6\pi i |
19,645 | b \cdot 6 + 18 \cdot a = 6 \cdot (a \cdot 3 + b) |
8,420 | J^n = J^{(-1) + n} \cdot J^1 |
5,265 | 1 + b + b^2 + b^3 + \ldots + b^l = \dfrac{-b^{1 + l} + 1}{-b + 1} |
-9,134 | -5\cdot 2\cdot 2\cdot 2 + p\cdot 2\cdot 2\cdot 5 = 40 (-1) + 20 p |
-2,838 | 5^{1 / 2}\cdot 9^{1 / 2} + 5^{1 / 2} = 3\cdot 5^{\frac{1}{2}} + 5^{\dfrac{1}{2}} |
5,811 | \frac{1}{2}*(l^2 + l) = l + (-l + l^2)/2 |
16 | (1 - p)*0 + p = p |
21,316 | 1900 = \binom{20}{1}\cdot \binom{5}{4}\cdot 19 |
29,358 | 14.5 = \cosh(y) + 5 \implies 9.5 = \cosh(y) |
-5,773 | \dfrac{1}{x\cdot 3 + 27} = \frac{1}{3(9 + x)} |
-7,109 | \tfrac{1}{22} = 3/12 \cdot \frac{1}{11} \cdot 2 |
-2,977 | \sqrt{10}\cdot (5 + 3) = \sqrt{10}\cdot 8 |
11,712 | 6^{l + 1} + (-1) = 5*s + 5*6^l = 5*(s + 6^l) |
813 | 1 - 2*x * x - x = \left(1 - 2*x\right)*\left(x + 1\right) |
17,333 | 272 = 17 \cdot ((-1) + 17) |
22,123 | a \cdot a - d^2 = (a + d)\cdot (a - d) = 21 \Rightarrow (a + d)\cdot 3 = 21 |
28,306 | \frac12 \cdot \sin(2 \cdot B) = \sin(B) \cdot \cos(B) = \frac{1}{\cos(0)} \cdot \cos(B + 0) \cdot \sin\left(B\right) |
20,721 | z \times d \times x = x \times d \times z |
21,057 | i = l + (-1) \Rightarrow \left\lfloor{\frac{1}{l} \cdot (i + 1)^2}\right\rfloor = l \gt l + (-1) |
6,700 | n + (-1) + n + 2 (-1) = n*2 + 3 (-1) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.