id
int64
-30,985
55.9k
text
stringlengths
5
437k
19,824
-\frac{1}{1 + a} + \frac{1}{-a + 1} = \frac{a\cdot 2}{-a \cdot a + 1}\cdot 1
-1,767
\pi \cdot 5/6 = \pi \cdot \frac{19}{12} - \frac{3}{4} \cdot \pi
22,149
\left(z_2 = z_1 + 1/(z_1) \Rightarrow 0 = 1 + z_1^2 - z_2\cdot z_1\right) \Rightarrow (z_2 ± \left(z_2^2 + 4\cdot (-1)\right)^{1/2})/2 = z_1
14,796
e^y = \sum_{n=0}^\infty y^n/n! \gt \frac{y^n}{n!}
24,956
-a^{2\cdot x} = -a^{2\cdot x} = -a^{2\cdot x}
25,629
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
22,725
(2 \cdot k + 1)^2 = 4 \cdot k \cdot k + 4 \cdot k + 1 = 4 \cdot \left(k^2 + k\right) + 1
-16,750
3 = 3 \cdot 3 \cdot k + 3 \cdot (-7) = 9 \cdot k - 21 = 9 \cdot k + 21 \cdot (-1)
-20,943
\frac{1}{q*40}*(q*30 + 40) = 5/5*\frac{1}{q*8}*(6*q + 8)
19,671
\sum_{k=1}^x \left((1 + k)! - k!\right) = \sum_{k=1}^x (1 + k)! - \sum_{k=1}^x k!
-6,296
\frac{1}{(x + 6) \cdot 4} = \dfrac{1}{x \cdot 4 + 24}
-1,976
3/4 \cdot \pi = -\pi \cdot 2/3 + \dfrac{17}{12} \cdot \pi
-2,414
6^{1/2}\cdot \left(3 + 2\right) = 6^{1/2}\cdot 5
-4,622
(2 \times (-1) + y) \times (y + 1) = 2 \times (-1) + y^2 - y
7,880
5/2 - \frac73 = \dfrac{1}{6}
-3,034
\sqrt{9} \cdot \sqrt{6} + \sqrt{16} \cdot \sqrt{6} = \sqrt{6} \cdot 3 + 4 \cdot \sqrt{6}
5,751
-\dfrac{2}{s^2 + (-1)} + \frac{1}{(-1) + s} = \tfrac{1}{1 + s}
-17,206
\dfrac{1}{\sec^2{\theta}} \cdot \left(1 + \tan^2{\theta}\right) = \dfrac{1}{\sec^2{\theta}} \cdot \sec^2{\theta}
-7,672
\frac{19\cdot i + 8}{4 - 3\cdot i}\cdot \frac{3\cdot i + 4}{4 + i\cdot 3} = \frac{1}{4 - 3\cdot i}\cdot (19\cdot i + 8)
-233
\frac{7!}{\left(5 \cdot (-1) + 7\right)! \cdot 5!} = \binom{7}{5}
-7,333
\frac{2}{10} \cdot \frac39 = 1/15
11,175
x = \frac{1}{y + 4 \cdot (-1)} \cdot \left(y + 3 \cdot (-1)\right)\Longrightarrow y = \dfrac{1}{x + (-1)} \cdot \left(x \cdot 4 + 3 \cdot \left(-1\right)\right)
7,021
2 + x*2 = 1 + (1 + x)^2 - x^2
-501
-16\cdot \pi + \dfrac13\cdot 52\cdot \pi = \pi\cdot \frac43
-20,747
\tfrac{1}{x \cdot (-4)} \cdot \left(x \cdot (-18)\right) = \dfrac{x \cdot (-2)}{\left(-2\right) \cdot x} \cdot \frac{9}{2}
3,613
b + 1 = 1 + b
28,550
\dfrac{1}{\cos{y}}\sin{y} = \tan{y}
9,221
-6\cdot x - 24 = -(12 + 3\cdot x)\cdot 2
4,380
\left(S + T\right)*(x_1 + x_2) = \left(S + T\right)*x_2 + (T + S)*x_1
-3,397
-13^{1/2} + 117^{1/2} = (9*13)^{1/2} - 13^{1/2}
22,509
\sin\left(8x\right) = \sin(5x + 3x) = \sin(5x) \cos(3x) + \sin\left(3x\right) \cos(5x)
-2,001
\pi \cdot \dfrac{11}{12} - \pi \cdot 2/3 = \pi/4
33,315
13+16+19=48
-3,924
\frac{1}{r^5}r^4 \cdot \frac{1}{22}6 = \frac{6r^4}{22 r^5}
8,292
\cos{y} = (e^{i y} + e^{-i y})/2 \sin{y} = \frac{1}{2 i} (e^{i y} - e^{-i y})
17,998
(n + (-1))*\left(n + \left(-1\right)\right)! + \left(n + 2*(-1)\right)*(n + (-1))! = \left(n + (-1)\right)!*(n + (-1) + n + 2*(-1)) = (n + (-1))!*(2*n + 3*(-1))
15,911
\left(f + x\right)^2 = f \cdot f + x\cdot f\cdot 2 + x^2
11,572
exp(n + 1) = exp(n) \cdot e^1 = e^n \cdot e^1 = e^{n + 1}
18,538
\frac{1}{80}\cdot 40 = \frac{1}{2}
12,992
(E + C)^2 = C^2 + E^2 + C \times E + E \times C
12,269
\mu_x = k_x\cdot d + \left(k_x + 1\right)\cdot f rightarrow k_x = \dfrac{1}{d + f}\cdot (-f + \mu_x)
31,411
2^m + \left(-1\right) - |y| + 1 = 2^m - |y| = 2^m + y
7,818
h\cdot (d + x) = h\cdot x + d\cdot h
47,370
600 = 2 \cdot \left(100 + 100 + 100\right)
12,299
11\cdot \left(-1\right) + 12^2 = 133
13,916
\left(z_1 \cdot z_2\right)^2 = z_1 \cdot z_2 \cdot z_1 \cdot z_2 = z_1^2 \cdot z_2 \cdot z_2 = z_1 \cdot z_2
34,443
b^2 - d * d*4 = (b - 2d) (d*2 + b)
19,449
41 = \left(-2 + \sqrt{5}\cdot 3\right)\cdot (2 + \sqrt{5}\cdot 3)
27,293
m^2 + 1 = m \cdot m + 1^2
2,040
\cos(y) = -\sin^2(y/2)*2 + 1
3
100 ea + (xa + be)*10 + bx = (10 e + x) (b + 10 a)
15,923
(10 - b)^2 = 100 - 20 b + b^2
28,363
\frac16 \times ((-1) + 5) = 2/3
26,393
\dfrac{1}{1 - r}\cdot (-r^3 + 1) = 1 + r \cdot r + r
53,000
\chi = \chi
22,256
\dfrac{1}{\sqrt{2}} = 1/(2 \sqrt{2}) + 1/(2 \sqrt{2})
28,292
\left(a + b\right)^2 = 100 = a \cdot a + 2\cdot a\cdot b + b^2 rightarrow -\frac{1}{2}\cdot (b \cdot b + a^2) = b\cdot a
3,411
-\dfrac{1}{16}\cdot \pi + \frac{3\cdot \pi}{16} = \frac{1}{8}\cdot \pi
-9,336
36q^3 - 36q^2 = (2\cdot2\cdot3\cdot3 \cdot q \cdot q \cdot q) - (2\cdot2\cdot3\cdot3 \cdot q \cdot q)
-4,526
-\frac{2}{2 + x} - \frac{4}{x + (-1)} = \frac{-6x + 6(-1)}{x^2 + x + 2(-1)}
-1,203
\frac{1}{8*\frac{1}{3}}*(\frac{1}{7}*(-9)) = -\frac97*\frac38
-578
e^{14 \cdot \dfrac{\pi}{3} \cdot i} = (e^{i \cdot \pi/3})^{14}
1,367
((\dfrac12)^2)^4 = 1/256
19,007
\dfrac{1}{2} = \tfrac{1}{4} + 1/4
5,647
z^4 - z^2\cdot 4 + 2 = \left(z^2 + 2\cdot (-1)\right) \cdot \left(z^2 + 2\cdot (-1)\right) + 2\cdot \left(-1\right)
33,725
\frac12*(-1 + \sqrt{-3}) = -\frac12 + \sqrt{3}*\mathrm{i}/2
17,374
(1 - x^2/3 + x^4/5 - \frac{x^6}{7} + \dotsm)^{-1} = x/\arctan{x}
31,027
l = 2 + 3\cdot m rightarrow l\cdot l/3 = 1 + 3\cdot m^2 + 4\cdot m
-25,001
0 + \dfrac{8}{10} + \dfrac{3}{100} + \dfrac{4}{1000} + \dfrac{2}{10000} = \dfrac{8342}{10000}
38,429
\binom{9 + 3 + \left(-1\right)}{(-1) + 3} = 55
-8,046
\frac{4 + i}{-1 + i\cdot 4} = \frac{1}{-1 + i\cdot 4}(4 + i) \frac{1}{-1 - 4i}\left(-i\cdot 4 - 1\right)
7,954
c = m \cdot r rightarrow r = \frac{1}{m} \cdot c
17,746
\tfrac{1}{b*f} = \frac{1}{b*f}
-23,211
\frac32\cdot (-\frac{21}{2}) = -63/4
51,402
\begin{pmatrix}10 + 1 & 0 & -3 & 2 & 4\\5 & 35 + 6 & 7 & 8 & -9\\1 & 1 & 5 + 1 & 1 & 1\\0 & 0 & 0 & 1 + 1 & 0\\2 & -3 & 2 & -3 & 14 + 4\end{pmatrix} = \begin{pmatrix}11 & 0 & -3 & 2 & 4\\5 & 41 & 7 & 8 & -9\\1 & 1 & 6 & 1 & 1\\0 & 0 & 0 & 2 & 0\\2 & -3 & 2 & -3 & 18\end{pmatrix}
-7,375
\frac{1/9}{8}\times 2 = \frac{1}{36}
15,322
b^3 + a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 = (a + b) \cdot (a + b) \cdot (a + b)
3,046
k*4 = -(2*(-1) + k) - 2 + 2*k + k*3
-11,580
-8 - i\cdot 6 = -9 + 1 - 6\cdot i
-3,362
2\sqrt{13} + \sqrt{13} = \sqrt{13} + \sqrt{4} \sqrt{13}
12,858
\|h + b*i\|^{2*x} = (h^2 + b^2)^x = \|(h + b*i)^x\|^2
28,196
\cos(u) \sin\left(u\right)\cdot 2 = \sin\left(u\cdot 2\right)
3,624
v \cdot G_0 \cdot v = v \cdot G_0^{1/2} \cdot G_0^{\frac{1}{2}} \cdot v = G_0^{1/2} \cdot v
940
3 \cdot (-1) + 3 \cdot n = n + 2 \cdot (-1) + n + n + (-1)
-17,559
28 \cdot (-1) + 35 = 7
19,450
269/8 + (x\cdot 2 + 5\cdot \left(-1\right))\cdot (49 + 4\cdot x^2 + 10\cdot x)/8 = x^3 + 6\cdot x + 3
-9,780
24\% = \frac{1}{100}\times 24 = 0.24
8,115
\frac{y}{\sqrt{1 + y \cdot y}} = \sin(\tan^{-1}(y))
6,166
36/7 \cdot \left(1/4 + 7 \cdot y/12\right) - \frac{9}{7} = y \cdot 3
9,944
1 + \dfrac{2}{3} = \frac{1}{3}\cdot 5
11,619
3^{4\cdot k} = 9^{2\cdot k}
21,722
\frac{1}{10} + 1/15 = 3/30 + 2/30 = \frac{5}{30}
45,715
38 = 2\cdot 19
16,285
\dfrac{1}{(k + \left(-1\right))!} \cdot k! = k
32,208
x^2 - 4*x + 120 = x^2 - 4*x + 4 + 116 = \left(x + 2*(-1)\right)^2 + 116
1,351
BA*(-x + A) = AB*\left(-x + A\right)
13,835
a_2 a_1 a_3 = a_2 a_3 a_1
20,635
\left(n + k\right) \cdot (l + i) = n \cdot l + k \cdot l + i \cdot n + i \cdot k
29,997
3^{4 + 7 \cdot (-1)} = 1/27 = \dfrac{1}{3^3}
-3,995
7l/6 = l\frac{7}{6}