id
int64
-30,985
55.9k
text
stringlengths
5
437k
-18,961
5/6 = \frac{H_x}{9 \times \pi} \times 9 \times \pi = H_x
-15,802
\frac{1}{10}*5 - 9*\frac{9}{10} = -\frac{1}{10}*76
20,202
\frac{1.8 - 3.8}{2 - 1.2} = -2/0.8 = -\frac{1}{2} \cdot 5
19,197
a/\sin{a} = 2\cdot R \implies \sin{a} = a/(2\cdot R)
10,759
2*\sin(y)*\cos(y) = \sin\left(y*2\right)
-7,161
\frac{1}{11} = \frac{1}{11}5*2/10
36,721
\left(x^2 + f^2\right)^{\frac{1}{2}} = (f^2 + x \cdot x)^{1 / 2}
32,523
\dfrac{1}{120}3 = \frac{1}{40}
18,350
\sin(\pi/m) m = \sin(\pi/m)/(\pi\cdot 1/m) \pi
-527
e^{19 \cdot \pi \cdot i} = (e^{\pi \cdot i})^{19}
37,793
393 = 38 \cdot \left(-1\right) + 431
24,100
2^l + z = 2^l - |z| \geq 2^{l + (-1)} + 2^{l + \left(-1\right)} - |z|
-20,247
-7/4 \cdot \frac{(-6) \cdot p}{(-6) \cdot p} = \frac{p \cdot 42}{p \cdot (-24)} \cdot 1
1,565
2^3 a = a*2*2*2
-3,509
\dfrac{1}{100} \cdot 15 = \frac{5 \cdot 3}{20 \cdot 5}
-10,594
-\tfrac{1}{60\cdot q}\cdot (80 + q\cdot 100) = -\dfrac{4 + 5\cdot q}{q\cdot 3}\cdot 20/20
4,916
(y + 3(-1))^{\frac{1}{2}} = (-(3 - y))^{\frac{1}{2}} = i*\left(3 - y\right)^{1 / 2}
33,663
\frac{2}{15} = \left(0.6 + 1\right)/12
-2,546
\sqrt{11} + \sqrt{25*11} = \sqrt{275} + \sqrt{11}
8,295
\sqrt{6 + \sqrt{5}*2} = \sqrt{\sqrt{20} + 6}
14,172
\sin(t)\cdot \cos(t)\cdot 2 = \sin(2\cdot t)
-8,939
\frac{1}{100}*17.5 = 17.5\%
-18,400
\frac{\omega\cdot (\omega + 6\cdot (-1))}{(\omega + 2)\cdot (\omega + 6\cdot (-1))} = \dfrac{-\omega\cdot 6 + \omega^2}{\omega^2 - 4\cdot \omega + 12\cdot (-1)}
20,442
5 + b^2 = a^2 + 5 \Rightarrow a \cdot a = b^2
17,822
f + f = 2 \times f
-18,384
\frac{1}{t^2 - t*5 + 24 (-1)}(-t*8 + t^2) = \frac{t*(t + 8(-1))}{(t + 3) (t + 8\left(-1\right))}
20,040
A \cdot A^2 \cdot (1 - V) - A^2 + V = (-V + (-V + 1) \cdot A^2 - A \cdot V) \cdot (A + (-1))
4,399
2^3 = \frac{1}{2}2^n \implies n = 4
4,925
w_{x + 1} = w_x \cdot 3 + 2\Longrightarrow 1 + w_{x + 1} = 3 + 3 \cdot w_x = 3 \cdot \left(1 + w_x\right)
-19,032
\frac{1}{45}\cdot 26 = \dfrac{C_q}{81\cdot \pi}\cdot 81\cdot \pi = C_q
-28,793
\int x\,dx=\int x^{{1}}\,dx =\dfrac{x^{{1}+1}}{{1}+1}+C =\dfrac12 x^2+C
-29,523
\dfrac{1}{2!}5! = \dfrac{120}{2} = 60
32,306
1 + 2 \cdot (x + 2 \cdot \left(-1\right)) = 3 \cdot \left(-1\right) + 2 \cdot x
-24,997
\frac{1}{10000}5 + 0 + 4/10 + \frac{3}{100} + \frac{1}{1000}3 = \frac{4335}{10000}
24,743
l\cdot x + l = (x + 1)\cdot l
-1,378
\frac{\frac15\cdot 4}{1/2\cdot 3} = 4/5\cdot 2/3
9,951
x^3 - a^3 = (x^2 + x\times a + a \times a)\times (x - a)
10,337
-(-z + x) + m + 1 = z + m + 1 - x
41,800
65 = 8^2 + 1 \cdot 1 = (8 + i) (8 - i)
29,813
\left(6 + i^3 + i^2 \cdot 3 + 8 \cdot i\right)/3 = \frac13 \cdot (5 \cdot \left(1 + i\right) + \left(i + 1\right)^3)
3,954
c\cdot h_2 + c\cdot h_1 = (h_2 + h_1)\cdot c
960
1 - (4/5)^5 = \frac{1}{3125}\times 2101
-2,736
\sqrt{6}\cdot \sqrt{16} + \sqrt{6} = \sqrt{6}\cdot 4 + \sqrt{6}
-4,901
\dfrac{1}{10} 3.8 = 3.8/10
45,764
\frac{1}{5}\cdot 11 = 2.2
53,888
\cos^3{y} = \left(\tfrac{1}{2}*(e^{i*y} + e^{-i*y})\right)^3 = \cos{3*y}/4 + \dfrac{1}{4}*3*\cos{y}
-1,618
\pi \cdot 17/12 + \frac{1}{12}23 \pi = \pi \frac{1}{3}10
12,610
l\cdot k - k - l = -k + (k + (-1))\cdot l
-4,281
\frac{1}{V} \cdot V^5 = \frac{V}{V} \cdot V \cdot V \cdot V \cdot V = V^4
8,012
-2\cdot x^4 + 2\cdot \left(x^2 + x^4\right) = 2\cdot x^2
-8,088
\frac12\cdot \left(-3 - 7\cdot i + 3\cdot i + 7\cdot (-1)\right) = (-10 - 4\cdot i)/2 = -5 - 2\cdot i
1,997
-99 = 3^2*(-11)
30,176
\sin\left(-z + \pi/2\right) = \cos{z}
22,359
80 * 80 + 5959*(-1) = 441
24,440
5 + 3\cdot \left(-1\right) = 2 \lt 3
-25,802
\frac57\times 1/3 = \frac{5}{21}
21,055
(f \cdot b) \cdot (f \cdot b) = f^2 \cdot b^2
-26,462
f^2 + d^2 - 2df = (d - f)^2
34,921
I + x = B \implies \sqrt{I} + \sqrt{x} = B
22,267
\sin(\frac{4\cdot \pi}{3}) = -\sin(\pi/3)
27,962
3 = 4 + 2\cdot (-1) + 1 = 111
7,526
10^{81} + (-1) = (10^9)^9 + (-1) = 5185^9 + \left(-1\right) = 5185*(5185^2)^4 + (-1) = \dotsm = 729
41,134
\dfrac{10}{4000}*400 = 1
9,823
1 + \lambda\cdot 3^{\tfrac{9}{8}}\cdot 4 - 3^{1/8} \lambda\cdot 4 = 0 \Rightarrow -1 = 8\cdot \lambda\cdot 3^{\dfrac18}
31,002
\binom{\left(-1\right) + l}{l} = \frac{1}{l! \times (-l + l + (-1))!} \times \left((-1) + l\right)!
-11,704
\left(\frac{1}{10}\cdot 7\right)^2 = 49/100
-20,827
-\frac83 \left(-8/\left(-8\right)\right) = \frac{64}{-24}
-5,491
\frac{2}{\left(1 + x\right) (x + 2(-1))}x = \frac{2x}{x^2 - x + 2\left(-1\right)}
15,784
-x\cdot y = -y\cdot x + x\cdot y + y\cdot (-x)
-21,916
-\dfrac52 - \frac{1}{4} 3 = -\frac{5*2}{2*2} - 3/(4) = -10/4 - 3/4 = -(10 + 3 (-1))/4 = -13/4
-27,340
\frac{\sin\left(2x\right)}{\cos(x)} = \sin(x)*2
14,128
0 = r^4 + 3*r^2 - 2*r + 3 = (r^2 + 1)^2 + (r + \left(-1\right)) * (r + \left(-1\right)) + 1
1,549
0 = (Y - X)\cdot \sin(2) - (-X + Y)\cdot \cos(2) \Rightarrow 0 = \left(\sin\left(2\right) - \cos(2)\right)\cdot \left(-X + Y\right)
27,866
(x - y)\cdot (y + x) = x^2 - y^2
15,883
\tan\left(x\right) = \sec(x) \sin\left(x\right)
39,937
12=2^2\cdot 3
-1,605
-\dfrac{\pi}{2} + \pi \cdot \tfrac{1}{6} \cdot 7 = \pi \cdot \frac{2}{3}
-4,616
5 (-1) + z^2 - z \cdot 4 = (z + 5 \left(-1\right)) (1 + z)
-22,424
125^{\frac23} = 125^{1/3} \cdot 125^{1/3} = 5^2 = 5\cdot 5 = 25
-10,332
\frac{10}{10}*(-3/(5*p)) = -30/(50*p)
1,073
\int (x + (-1)) \times (3 \times x + 1)\,dx = \int (3 \times x^2 - 2 \times x + 1)\,dx = x \times x \times x - x^2 + x
94
yy + yy + yy = 3y^2 = 3y y > y
-18,810
6z/6 = z
27,017
\frac{1/b*h}{\frac{1}{\psi}*c} = \psi/c*h/b
49,757
(1 \cdot 2 \cdot 3 \cdot 4)^5 \cdot 2 \cdot 3 \cdot 4 = 191102976
9,680
\frac{48^2}{17^2} \cdot (34^2 - x^2) = \left(95 - x\right)^2 = 95 \cdot 95 - 190 \cdot x + x \cdot x
-22,269
n \cdot n + n \cdot 6 + 7 \cdot \left(-1\right) = (7 + n) \cdot (\left(-1\right) + n)
21,150
z^2 + 2*z + 15*(-1) = z^2 + 2*z + 1 + 16*(-1) = (z + 1)^2 - 4^2 = \left(z + 1 + 4*(-1)\right)*(z + 1 + 4) = (z + 3*\left(-1\right))*\left(z + 5\right)
-20,219
\frac{1}{8 t + 56} (t + 7) = \frac{1}{t + 7} (7 + t)/8
11,290
\sin{\pi \cdot 2/n} n = \sin{2\pi/n}/(\frac1n)
13,493
E(Q) E(R) = E(RQ)
-17,215
-\frac{1}{3} \cdot 10 = -10/3
21,789
\dfrac{2^{\dfrac23}}{2} = 2^{-\frac13}
7,466
\sin{\pi \cdot 4} + \sin{\pi \cdot 2} = \sin(\pi \cdot 2 + \pi \cdot 4)
11,892
(10^{400} + (-1))\times (1 + 10^{400})\times 5/9 = 5\times (10^{800} + \left(-1\right))/9
51,592
21522+52^2=24226
21,318
5! \cdot \dfrac{1}{2}/3 = 20
2,016
\sec^2(z_2^2 \cdot z_1) \cdot \left(y' \cdot z_2 \cdot z_1 \cdot 2 + z_2^2\right) = \frac{2}{\pi} \cdot z_2 + \dfrac{1}{\pi} \cdot 2 \cdot y' \cdot z_1
-16,226
\frac{1}{9} = \frac19
29,958
\mathbb{E}(\sum_{x=1}^\infty \mu_x) = \sum_{x=1}^\infty \mathbb{E}(\mu_x)