id
int64
-30,985
55.9k
text
stringlengths
5
437k
-4,415
4 + x^2 + x*5 = (x + 1)*(x + 4)
3,403
x^2 + z * z = (x - t + t)^2 + z^2 = (x - t)^2 + 2*(x - t)*t + t * t + z^2
2,365
z_x = z \cdot z_x/z
-9,833
0.01 (-20) = -20/100 = -\dfrac15
15,032
(y^2 \times x + y \times z \times z + z \times x^2)/2 + 3 = (y \times x \times y + z \times y \times z + x \times z \times x)/2 + 3
9,792
An = 1 + 7/10 (An - A) + \frac{3}{10} (An + A) = An + 1 - \dfrac25 A
36,054
30^{1 / 2}\cdot 2/5 = 30^{\frac{1}{2}}\cdot 2/5
-13,688
5 + (6 - 8 \cdot 8) = 5 + (6 + 64 \cdot (-1)) = 5 - 58 = 5 + 58 \cdot \left(-1\right) = -53
-4,279
\frac{k^3 \cdot 2}{5 \cdot k^2} = \tfrac25 \cdot \frac{1}{k \cdot k} \cdot k^3
23,980
\pi\cdot 3/4 = \pi - \tfrac{1}{4}\pi
17,490
-16 t^2 + 32 t + 20 = -(-5/4 + t^2 - 2t)*16
8,095
-\frac{64}{-8} + 15 = 15 - 4^3/\left(-8\right)
3,280
2 \cdot \sqrt{3} + 4 = 3 + \sqrt{3} \cdot 2 + 1
24,224
A_m^F A_{(-1) + m}^F \dots A_1^F A_2^F = (A_1 A_2 \dots A_m A_{(-1) + m})^F
23,928
1/A + A = 2 \cdot x \implies x \pm (x^2 + (-1))^{1 / 2} = A
16,869
j_1 \cdot c_1 = c \cdot j \implies j/(j_1) \cdot c = c_1
-1,248
5/6*(-\dfrac{4}{3}) = (\frac{1}{3}*\left(-4\right))/(\frac{1}{5}*6)
4,209
10 = 2 \cdot 5 = \sqrt{10} \cdot \sqrt{10}
15,355
\frac{1}{u^2 + (-1)} = \frac{1}{((-1) + u) \cdot (u + 1)}
23,454
y = \frac{1}{2}y + y/2
28,461
26 = 5^2 + 1^2 = 4^2 + 3^2 + 1 1 = 3^2 + 3^2 + 2^2 + 2^2
18,218
1 - e + 2 - e = 0\Longrightarrow e = 1.5
698
\dfrac13 \cdot 0 + \frac{2}{3} \cdot (\frac12 + 1/2) = \dfrac{2}{3}
-18,962
1/3 = \dfrac{1}{25\cdot \pi}\cdot A_s\cdot 25\cdot \pi = A_s
-2,986
(25*10)^{1/2} - 10^{1/2} = 250^{1/2} - 10^{1/2}
17,877
\left(x = -a \Rightarrow x^m = a^m\right) \Rightarrow a^m + x^m = a^m \cdot 2
-12,184
\frac38 = p/(8 \pi)*8 \pi = p
20,923
2*\sin(5*z)*\cos(4*z) = \sin\left(5*z + 4*z\right) + \sin(5*z - 4*z) = \sin(9*z) + \sin(z)
12,947
\frac{30*7!}{9!} = \frac{30}{72} = 5/12
1,398
\frac{g^2 c^2}{x g + x c} = \frac{x^2 c^2}{x g + g c} = \tfrac{x^2 g g}{g c + x c}
8,272
\frac{i}{1 + i^2\cdot x^2} = \frac{\partial}{\partial x} \arctan(x\cdot i)
10,266
\binom{3 \cdot (-1) + n + r}{r} = \binom{(-1) + n + 2 \cdot (-1) + r}{r}
5,370
\dfrac{(k_A \cdot L)^9}{(k_A \cdot L)^5} = (k_A \cdot L)^4
29,645
-1 = \sin{\dfrac{3\cdot \pi}{2}\cdot 1}
-20,836
\frac{(-12) k}{9(-1) + k*3} = 3/3 \frac{\left(-1\right)*4 k}{k + 3(-1)}
11,418
1.44\cdot x = (1 + 0.2)^2\cdot x
-2,826
(1 + 3) \cdot 2^{1 / 2} = 4 \cdot 2^{1 / 2}
15,936
(t - -3)\cdot (3\cdot (-1) + t) = (3 + t)\cdot (t + 3\cdot \left(-1\right))
13,188
(z - 3i) (-3i + z) = i*3*i*3 + zz - i*3 z - z*3i
-624
\frac{1}{4}\pi = -14 \pi + \pi \frac{57}{4}
3,164
(x - k + 1)! = (-k + x)! (1 + x - k)
31,191
h\cdot g = -g\cdot \left(-h\right)
20,618
36^{-\frac12*5} = (6^2)^{-\frac{1}{2}*5} = 1/7776
-1,340
1/4*5/((-1)*8*\tfrac19) = 5/4 \left(-\frac{9}{8}\right)
-20,564
-\frac{9}{1} \frac{-z \cdot 6 + 4}{-z \cdot 6 + 4} = \frac{z \cdot 54 + 36 (-1)}{4 - 6z}
-428
\frac{19}{12}\cdot \pi = \frac{115}{12}\cdot \pi - 8\cdot \pi
20,314
2x x^4*9 + x^5*6 + 4x^3*5x^2 = x^5*44
18,355
2*32*4^4 + 4^4*8*28 = 73728
13,850
A^2 + A - I_2 = t*A - I_2 + A - I_2 = (t + 1)*A - 2*I_2
-3,060
\sqrt{4} \sqrt{11} + \sqrt{11} = \sqrt{11} + \sqrt{11}\cdot 2
8,360
z^2 + z\cdot p + q = -p^2/4 + (z + \frac{p}{2})^2 + q
18,366
15 = (5 + 2 (-1))^2 + 6
33,589
(z + 1) \times g + (z + 1) \times f = (1 + z) \times (f + g)
-20,060
-5/3*\frac{2*(-1) - y*6}{-y*6 + 2*(-1)} = \frac{y*30 + 10}{-y*18 + 6*\left(-1\right)}
13,297
\frac{\binom{48}{3}}{\binom{52}{3}}\cdot \binom{4}{0} = \binom{48}{3}/\left(\binom{52}{3}\right)
19,754
\left(4k \cdot 3 = 4 \cdot (24 - y) \Rightarrow k \cdot 3 = 24 - y\right) \Rightarrow y = 24 - k \cdot 3
-13,752
\frac{70}{8 + 6} = \dfrac{70}{14} = \dfrac{70}{14} = 5
-23,492
1/6 = \frac{1}{9} \cdot 4 \cdot 3/8
-9,239
-11\cdot 2\cdot 2\cdot 2 - 3\cdot 11 p = 88 \left(-1\right) - 33 p
148
\left(x^{14} + x^{10} + x^6\right) \cdot (-x + x^5) = x^{19} - x^7
3,532
-35/2 + z^2 + 3/2\cdot z = (2\cdot z + 7\cdot (-1))\cdot (5 + z)/2
7,434
x x x = \left(x + (-1) + 1\right)^3 = (x + (-1))^3 + 3 \left(x + (-1)\right)^2 + 3 \left(x + \left(-1\right)\right) + 1
12,073
243/2 = 729/4 - \dfrac{729}{12}
7,543
\tan{50} = \tan(45 + 5) = \frac{1}{1 - \tan{45} \tan{5}} (\tan{45} + \tan{5})
19,232
10^{\left(n + 1\right)^2} = 10^{n^2 + 2 n + 1} = 10^{n n}\cdot 10^{2 n}\cdot 10^1
25,030
|x + 2 (-1)| = |x + (-1) + (-1)| \leq |x + (-1)| + 1
8,128
2 + 3*n = 5 + \left(\left(-1\right) + n\right)*3
10,693
\frac{\sin{-x}}{x \cdot (-1)} = \dfrac{1}{x} \cdot \sin{x}
14,638
l^{f + g} = l^g l^f
-12,427
48 = 66 \cdot (-1) + 114
33,344
\frac{\partial}{\partial x} (\tfrac{1}{m!}*x^m) = \frac{1}{m!}*m*x^{m + \left(-1\right)} = \frac{x^{m + (-1)}}{(m + (-1))!}
-1,924
\frac12 \cdot \pi - \pi \cdot \dfrac{17}{12} = -\pi \cdot 11/12
19,309
1 + \frac{1}{z + (-1)} = \dfrac{z + (-1) + 1}{z + (-1)} = \dfrac{1}{z + (-1)}*z
36,774
310 = 31/2\cdot \left(2\cdot b_1 + 30\cdot g\right) = 31\cdot (b_1 + 15\cdot g)
15,133
\frac{1}{2} \cdot (q^m + (-1)) = \frac{(q^m + (-1)) \cdot (\left(-1\right) + q)}{(q + (-1)) \cdot 2}
-18,391
\tfrac{1}{(j + 7) \cdot j} \cdot (6 + j) \cdot (7 + j) = \frac{1}{j^2 + j \cdot 7} \cdot \left(j^2 + 13 \cdot j + 42\right)
23,782
(-f - f)/(2\cdot g) = ((-2)\cdot f)/\left(2\cdot g\right) = \dfrac1g\cdot ((-1)\cdot f)
6,807
\sin(2\cdot v) = 2\cdot \sin(v)\cdot \cos\left(v\right)
8,779
m^4\cdot 4 + z^4 = (z^2 - 2\cdot z\cdot m + 2\cdot m^2)\cdot (z^2 + z\cdot m\cdot 2 + 2\cdot m^2)
-6,170
\frac{p}{(4 + p) \cdot (p + 1)} = \dfrac{1}{4 + p^2 + 5 \cdot p} \cdot p
17,758
k + z^2 = 0 \Rightarrow (-k)^{1/2} = z
7,983
\frac{b}{h}\cdot 8 = 8/(\frac{1}{b}\cdot h)
5,985
(x*x^Z)^Z = (x^Z)^Z*x^Z = x*x^Z
-4,613
\dfrac{-x \cdot 2 + 7 \cdot (-1)}{20 + x^2 + x \cdot 9} = \tfrac{1}{x + 4} - \frac{3}{x + 5}
17,361
\left(x \cdot h\right) \cdot \left(x \cdot h\right) \cdot \left(x \cdot h\right) = h^3 \cdot x^2 \cdot x
-20,672
(-9t + 24 (-1))/(-6) = \dfrac{1}{-2}(-t\cdot 3 + 8\left(-1\right))\cdot 3/3
22,392
\left(0 + a\right)^2 = 0^0 a \cdot a + 2 \cdot 0^1 a^1 + 0^2 a^2 = 0^0 a^2
12,560
b^3 + 3\times b^2 + 5\times b + 5 = 2 + (1 + b)^3 + (b + 1)\times 2
5,923
\frac{x^2*2}{x * x + 1} = 2 - \frac{2}{x^2 + 1}
-2,252
\frac{1}{20} \cdot 7 = -2/20 + 9/20
26,051
\cot^2{x} + 1 = \dfrac{1}{\sin^2{x}}
4,279
G = I*G = G*I
25,229
\frac{3 \cdot 1/8}{\frac38 + \frac{6}{10}} = 5/13
16,142
\sin{x\cdot 2} = -\sin{v} \implies \arcsin(-\sin{v}) = 2\cdot x
138
\cos(g + a) = \cos{a} \cos{g} - \sin{a} \sin{g}
-27,725
-\cot(y)\cdot \csc(y) = d/dy \csc(y)
54,113
\sum_{m=1}^\infty \frac{m}{y^m} = \sum_{m=1}^\infty -y\cdot \frac{\partial}{\partial y} \frac{1}{y^m} = -y\cdot \frac{\partial}{\partial y} \sum_{m=1}^\infty \frac{1}{y^m}
31,112
\frac1b = \frac{b}{b\cdot b} = \frac{b}{b^2} = \frac{b}{|b|^2}
26,103
\dfrac{a}{(b - c)*y*z}*h*x = \frac{b*h*y}{(c - a)*x*z}*1 = \frac{c*h*z}{(a - b)*x*y}
26,023
6 = \frac{1}{2}\cdot \left(16 + 4\cdot (-1)\right)