id
int64
-30,985
55.9k
text
stringlengths
5
437k
-13,193
-12/(-8) = 1.5
29,000
y^2 = (y + i - i) \cdot (y + i - i) = (y + i) \cdot (y + i) - 2\cdot (y + i) + \left(-1\right)
6,432
x^m/z\cdot z = (\frac{1}{z}\cdot x\cdot z)^m
29,376
0 = x\Longrightarrow 0 = \|x\|
-16,001
-\frac{1}{10} \cdot 10 + 8 \cdot \dfrac{9}{10} = 62/10
-22,367
y^2 - y\cdot 2 + 48\cdot (-1) = (y + 6)\cdot (8\cdot (-1) + y)
4,456
1/221 = 4/52 \cdot \frac{1}{51} \cdot 3
2,679
2 \cdot x + y = \frac{\partial}{\partial x} (x \cdot \left(x + y\right))
-20,914
5/5 (-6y + 9)/(y*(-5)) = \frac{45 - 30 y}{(-25) y}
-24,646
10 + 74 = 84
-15,997
\dfrac{1}{10}\cdot 10 = 9\cdot \frac{5}{10} - 5/10\cdot 7
20,211
\sin(2*\pi*y) = 2*\cos(y*\pi)*\sin(\pi*y)
-9,342
27*q = q*3*3*3
4,547
x^3 \cdot 20 + 17 (-1) = \left(x^3 + 3\right) \cdot 20 + 77 (-1)
21,910
1511 = 1008 + \left(1008\cdot (-1) + 2014\right)/2
34,001
\sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} + 3} = \sqrt{\sqrt{5} + 3} + \sqrt{2 + \sqrt{5}}
9,278
4 - 4 \sqrt{z + 4 (-1)} + |z + 4 (-1)| = 4 - 4 \sqrt{z + 4 (-1)} + z + 4 (-1) = z - 4 \sqrt{z + 4 (-1)}
2,834
Q \times x^2 = (x \times Q + s) \times x = x \times (x \times Q + s) + s \times x = x^2 \times Q + 2 \times x \times s
-1,595
\pi\cdot 3/2 = -\pi/2 + 2\cdot \pi
34,389
k \cdot 6 + 6 = 6 \cdot k + 3 \cdot 2
12,077
13 + 3\cdot (-1) + 4\cdot \left(-1\right) = 6
5,522
je - 1 + j + 1 = j*(e + (-1))
37,199
{x^n \choose 1} = x^n
18,818
Z_2\times Z_1 = Z_1\times Z_2
-28,778
\int z^{10}\,dz = \dfrac{z^{10 + 1}}{10 + 1} + Z = z^{11}/11 + Z
39,282
7 + 6 + 5 + 4 + 3 + 2 + 1 = \frac{56}{2} \cdot 1 = 28
-471
e^{12*i*\pi*5/12} = (e^{\frac{\pi*i*5}{12}})^{12}
27,597
\frac{1}{2^{1/n}} = \frac{a}{b} \Rightarrow \frac{b}{a} = 2^{1/n}
27,462
14-6-1=7
25,059
-a*\dfrac{1}{1 - a}*b = -\frac{b}{1 - a} + b
-5,853
\frac{1}{2\cdot (d + 9)}\cdot 3 = \dfrac{1}{2\cdot d + 18}\cdot 3
24,274
3 \cdot l + 1 = 3 \cdot (l + 3 \cdot (-1)) + 10 = 3 \cdot (l + 3 \cdot (-1)) + 5 \cdot 2
2,968
\left(1/10\right)^2 + (1/10)^2 + \dots + (\frac{1}{10})^2 = 1/10 \gt 0.01
32,259
a^n = a\cdot a^{n + (-1)} = a^{n + (-1)}\cdot a
39,789
\binom{5}{3} = \dfrac{5!}{3! (5 + 3(-1))!} = 10
2,778
\frac{\sin(\xi)}{\cos(\xi)} = \tan\left(\xi\right)
-6,134
\dfrac{2}{p^2 - 12\cdot p + 20} = \frac{2}{(2\cdot (-1) + p)\cdot \left(p + 10\cdot \left(-1\right)\right)}
4,526
(1 + x)\cdot \cdots = x \cdot x \cdot x - x\cdot 2 + (-1)
13,525
2 i - \left(i + 2\right)*5 + 1 = -9 - i*3
-174
\tfrac{9!}{(9 + 5 \times \left(-1\right))! \times 5!} = \binom{9}{5}
-11,508
-i \cdot 8 - 8 + 0 \cdot (-1) = -8 \cdot i - 8
-7,701
\frac{1}{i - 4}*(-15 + i*25)*\frac{1}{-4 - i}*(-4 - i) = \frac{-15 + i*25}{-4 + i}
12,690
a = 3*x\Longrightarrow a^2 = 9*x^2 = 3*3*x^2
-5,904
\frac{1}{x^2 - x \cdot 5 + 6} \cdot 5 = \frac{1}{(x + 3 \cdot (-1)) \cdot (2 \cdot \left(-1\right) + x)} \cdot 5
24,974
B * B + (-1) = (1 + B)*(\left(-1\right) + B)
-3,883
\tfrac{x^5 \cdot 72}{54 \cdot x \cdot x} = 72/54 \cdot \dfrac{x^5}{x^2}
-2,406
\sqrt{6}\cdot \sqrt{9} + \sqrt{6}\cdot \sqrt{4} = \sqrt{6}\cdot 3 + 2\cdot \sqrt{6}
11,009
\frac{d}{dy} \operatorname{asin}\left(y\right) = \frac{1}{\sqrt{1 - y^2}}
8,639
\left(1 + n^5\right) \left((-1) + n^5\right) = n^{10} + (-1)
15,422
det\left(V\right) det\left(Y\right) = det\left(VY\right) = det\left(Y\right) det\left(V\right)
12,380
π = x \cdot 2\Longrightarrow \frac{π}{2} = x
34,213
y = e*y = e^3*y = (y^5)^3*y = y^{16} = (y^2)^8
12,200
\tfrac{1}{-D^2 + 1} = \frac{1}{2 \cdot (1 + D)} + \frac{1}{\left(1 - D\right) \cdot 2}
33,088
\lim_{z\to -i} \frac{z^2-1}{z+i}=\lim_{z\to 0} \frac{z^2-2iz-2}{z}=\lim_{z\to 0} z-2i-\frac{2}{z}=-2i-2\lim_{z\to 0}\frac{1}{z}
15,305
8 = (2^{1 / 2})^6
-16,988
2 = 2 \cdot 3 \cdot p + 2 \cdot (-5) = 6 \cdot p - 10 = 6 \cdot p + 10 \cdot (-1)
36,509
55 = 5 \cdot 5 + 1^2 + 2^2 + 3^2 + 4^2
-17,875
16 = 70\cdot \left(-1\right) + 86
4,670
A^G\cdot A^G = (A\cdot A)^G = A^G
-22,991
\frac{33}{44} = \frac{3\cdot 11}{4\cdot 11}
34,961
h + x = h + x + h
-7,034
5/36 = 5/9 \cdot \dfrac28
19,645
a \cdot 18 + 6 \cdot b = 6 \cdot \left(b + 3 \cdot a\right)
24,656
(1 + 1)\cdot \left(1 + 1\right)\cdot (1 + 2) = 12
26,017
\cos{2 H} = 2 \cos^2{H} + (-1) = 1 - 2 \sin^2{H}
-20,313
\frac{(-1)*5*r}{r*5 + 7}*\frac44 = \frac{(-1)*20*r}{28 + r*20}
17,640
n \cdot n = (100 \cdot a \cdot n)^2 = 10000 \cdot a \cdot n^2
21,401
E[Y] \cdot 4 + 3 \cdot E[X] = E[Y \cdot 4 + 3 \cdot X]
12,753
\left(q - (q + (q \cdot ...)^{\frac{1}{2}})^{1 / 2}\right)^{\frac{1}{2}} = \dfrac12 \cdot \left(\left(-1\right) + (((-1) + q) \cdot 4 + 1)^{\dfrac{1}{2}}\right)
-7,249
\frac{3\cdot 10^{-1}}{8}\cdot \frac{1}{9}\cdot 2 = 1/120
-25,808
\dfrac{5}{3\cdot 7} = \dfrac{1}{21}\cdot 5
10,215
\frac{20}{2} \cdot \frac{1}{100} = \frac{1}{5 \cdot 2} = 1/10
21,770
1/\left(a\cdot b\right) = \tfrac{1}{a\cdot b} = \tfrac{1}{b\cdot a}
-20,650
\frac{10}{10}\cdot \left(7\cdot r + (-1)\right)/3 = (10\cdot \left(-1\right) + r\cdot 70)/30
10,097
0 = \tan{2 \cdot y} + \tan{y} \Rightarrow \tan{y} = 0
27,177
\frac{1}{(2 + 2 \cdot l) \cdot (1 + 2 \cdot l)} = \frac{1}{(l \cdot 2 + 2)!} \cdot (2 \cdot l)!
-20,812
\frac{70}{-r*14 + 56*(-1)} = 7/7*\frac{10}{-2*r + 8*\left(-1\right)}
27,680
\dfrac{1}{30} \times 10 = \frac{1}{3}
-19,925
-1.34 = -\frac{1}{50}67
-22,927
49/70 = 7\cdot 7/(10\cdot 7)
-5,540
\dfrac{5}{3\cdot (r + 2)} = \frac{5}{3\cdot r + 6}
-1,458
\frac{8 \cdot \dfrac17}{\dfrac15 \cdot (-7)} = \frac87 \cdot (-5/7)
-4,998
10^{-3 + 5} \cdot 39.5 = 10^2 \cdot 39.5
-1,116
-\frac{1}{42} \cdot 40 = \frac{(-40) \cdot \frac12}{42 \cdot \frac12} = -\tfrac{20}{21}
11,211
-\dfrac{1}{2} \cdot 9 = -\frac92
10,819
\sin(H*3) = \sin(3 H)
6,001
(37 + r)*\left(r + 37*(-1)\right) = r^2 - 37^2
8,768
-(6 \cdot i_2 + 1) + 6 \cdot i_1 + 1 = 2 \cdot (3 \cdot i_1 - 3 \cdot i_2)
437
(a + b) \left(a + b\right) = b^2 + a^2 + ba + ab
37
(c - h)^2 + 4ch = (h + c) \cdot (h + c)
17,102
\left(g - b\right)^2 = g^2 - g \cdot b \cdot 2 + b^2
20,338
\left(9 - 2\cdot x\right)\cdot x + 2\cdot x \cdot x + x\cdot 2 + 5\cdot \left(-1\right) = 5\cdot (-1) + 11\cdot x
-10,247
76/100 = \tfrac{1}{25} \cdot 19
10,215
\frac{20}{2}1/100 = \dfrac{1}{5 \cdot 2} = 1/10
4,513
( s, m) + \left( \phi, x\right) = ( s + \phi, m + x)
671
1518 = (\frac{13}{20} + 12) \cdot 20 \cdot 6
6,683
x^{\frac{1}{2}} = \frac{1}{2*x^{1 / 2}} = \frac{1}{2*x^{1/2}}
-8,008
(-32 + 96\cdot i - 32\cdot i + 96\cdot (-1))/32 = \dfrac{1}{32}\cdot (-128 + 64\cdot i) = -4 + 2\cdot i
-2,849
2^{\frac{1}{2}} + 3\cdot 2^{1 / 2} = 2^{\frac{1}{2}}\cdot 9^{\dfrac{1}{2}} + 2^{\frac{1}{2}}
8,565
44*0.39/0.357 = 48.067*\cdots \approx 48