id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-13,193 | -12/(-8) = 1.5 |
29,000 | y^2 = (y + i - i) \cdot (y + i - i) = (y + i) \cdot (y + i) - 2\cdot (y + i) + \left(-1\right) |
6,432 | x^m/z\cdot z = (\frac{1}{z}\cdot x\cdot z)^m |
29,376 | 0 = x\Longrightarrow 0 = \|x\| |
-16,001 | -\frac{1}{10} \cdot 10 + 8 \cdot \dfrac{9}{10} = 62/10 |
-22,367 | y^2 - y\cdot 2 + 48\cdot (-1) = (y + 6)\cdot (8\cdot (-1) + y) |
4,456 | 1/221 = 4/52 \cdot \frac{1}{51} \cdot 3 |
2,679 | 2 \cdot x + y = \frac{\partial}{\partial x} (x \cdot \left(x + y\right)) |
-20,914 | 5/5 (-6y + 9)/(y*(-5)) = \frac{45 - 30 y}{(-25) y} |
-24,646 | 10 + 74 = 84 |
-15,997 | \dfrac{1}{10}\cdot 10 = 9\cdot \frac{5}{10} - 5/10\cdot 7 |
20,211 | \sin(2*\pi*y) = 2*\cos(y*\pi)*\sin(\pi*y) |
-9,342 | 27*q = q*3*3*3 |
4,547 | x^3 \cdot 20 + 17 (-1) = \left(x^3 + 3\right) \cdot 20 + 77 (-1) |
21,910 | 1511 = 1008 + \left(1008\cdot (-1) + 2014\right)/2 |
34,001 | \sqrt{\sqrt{5} + 2} + \sqrt{\sqrt{5} + 3} = \sqrt{\sqrt{5} + 3} + \sqrt{2 + \sqrt{5}} |
9,278 | 4 - 4 \sqrt{z + 4 (-1)} + |z + 4 (-1)| = 4 - 4 \sqrt{z + 4 (-1)} + z + 4 (-1) = z - 4 \sqrt{z + 4 (-1)} |
2,834 | Q \times x^2 = (x \times Q + s) \times x = x \times (x \times Q + s) + s \times x = x^2 \times Q + 2 \times x \times s |
-1,595 | \pi\cdot 3/2 = -\pi/2 + 2\cdot \pi |
34,389 | k \cdot 6 + 6 = 6 \cdot k + 3 \cdot 2 |
12,077 | 13 + 3\cdot (-1) + 4\cdot \left(-1\right) = 6 |
5,522 | je - 1 + j + 1 = j*(e + (-1)) |
37,199 | {x^n \choose 1} = x^n |
18,818 | Z_2\times Z_1 = Z_1\times Z_2 |
-28,778 | \int z^{10}\,dz = \dfrac{z^{10 + 1}}{10 + 1} + Z = z^{11}/11 + Z |
39,282 | 7 + 6 + 5 + 4 + 3 + 2 + 1 = \frac{56}{2} \cdot 1 = 28 |
-471 | e^{12*i*\pi*5/12} = (e^{\frac{\pi*i*5}{12}})^{12} |
27,597 | \frac{1}{2^{1/n}} = \frac{a}{b} \Rightarrow \frac{b}{a} = 2^{1/n} |
27,462 | 14-6-1=7 |
25,059 | -a*\dfrac{1}{1 - a}*b = -\frac{b}{1 - a} + b |
-5,853 | \frac{1}{2\cdot (d + 9)}\cdot 3 = \dfrac{1}{2\cdot d + 18}\cdot 3 |
24,274 | 3 \cdot l + 1 = 3 \cdot (l + 3 \cdot (-1)) + 10 = 3 \cdot (l + 3 \cdot (-1)) + 5 \cdot 2 |
2,968 | \left(1/10\right)^2 + (1/10)^2 + \dots + (\frac{1}{10})^2 = 1/10 \gt 0.01 |
32,259 | a^n = a\cdot a^{n + (-1)} = a^{n + (-1)}\cdot a |
39,789 | \binom{5}{3} = \dfrac{5!}{3! (5 + 3(-1))!} = 10 |
2,778 | \frac{\sin(\xi)}{\cos(\xi)} = \tan\left(\xi\right) |
-6,134 | \dfrac{2}{p^2 - 12\cdot p + 20} = \frac{2}{(2\cdot (-1) + p)\cdot \left(p + 10\cdot \left(-1\right)\right)} |
4,526 | (1 + x)\cdot \cdots = x \cdot x \cdot x - x\cdot 2 + (-1) |
13,525 | 2 i - \left(i + 2\right)*5 + 1 = -9 - i*3 |
-174 | \tfrac{9!}{(9 + 5 \times \left(-1\right))! \times 5!} = \binom{9}{5} |
-11,508 | -i \cdot 8 - 8 + 0 \cdot (-1) = -8 \cdot i - 8 |
-7,701 | \frac{1}{i - 4}*(-15 + i*25)*\frac{1}{-4 - i}*(-4 - i) = \frac{-15 + i*25}{-4 + i} |
12,690 | a = 3*x\Longrightarrow a^2 = 9*x^2 = 3*3*x^2 |
-5,904 | \frac{1}{x^2 - x \cdot 5 + 6} \cdot 5 = \frac{1}{(x + 3 \cdot (-1)) \cdot (2 \cdot \left(-1\right) + x)} \cdot 5 |
24,974 | B * B + (-1) = (1 + B)*(\left(-1\right) + B) |
-3,883 | \tfrac{x^5 \cdot 72}{54 \cdot x \cdot x} = 72/54 \cdot \dfrac{x^5}{x^2} |
-2,406 | \sqrt{6}\cdot \sqrt{9} + \sqrt{6}\cdot \sqrt{4} = \sqrt{6}\cdot 3 + 2\cdot \sqrt{6} |
11,009 | \frac{d}{dy} \operatorname{asin}\left(y\right) = \frac{1}{\sqrt{1 - y^2}} |
8,639 | \left(1 + n^5\right) \left((-1) + n^5\right) = n^{10} + (-1) |
15,422 | det\left(V\right) det\left(Y\right) = det\left(VY\right) = det\left(Y\right) det\left(V\right) |
12,380 | π = x \cdot 2\Longrightarrow \frac{π}{2} = x |
34,213 | y = e*y = e^3*y = (y^5)^3*y = y^{16} = (y^2)^8 |
12,200 | \tfrac{1}{-D^2 + 1} = \frac{1}{2 \cdot (1 + D)} + \frac{1}{\left(1 - D\right) \cdot 2} |
33,088 | \lim_{z\to -i} \frac{z^2-1}{z+i}=\lim_{z\to 0} \frac{z^2-2iz-2}{z}=\lim_{z\to 0} z-2i-\frac{2}{z}=-2i-2\lim_{z\to 0}\frac{1}{z} |
15,305 | 8 = (2^{1 / 2})^6 |
-16,988 | 2 = 2 \cdot 3 \cdot p + 2 \cdot (-5) = 6 \cdot p - 10 = 6 \cdot p + 10 \cdot (-1) |
36,509 | 55 = 5 \cdot 5 + 1^2 + 2^2 + 3^2 + 4^2 |
-17,875 | 16 = 70\cdot \left(-1\right) + 86 |
4,670 | A^G\cdot A^G = (A\cdot A)^G = A^G |
-22,991 | \frac{33}{44} = \frac{3\cdot 11}{4\cdot 11} |
34,961 | h + x = h + x + h |
-7,034 | 5/36 = 5/9 \cdot \dfrac28 |
19,645 | a \cdot 18 + 6 \cdot b = 6 \cdot \left(b + 3 \cdot a\right) |
24,656 | (1 + 1)\cdot \left(1 + 1\right)\cdot (1 + 2) = 12 |
26,017 | \cos{2 H} = 2 \cos^2{H} + (-1) = 1 - 2 \sin^2{H} |
-20,313 | \frac{(-1)*5*r}{r*5 + 7}*\frac44 = \frac{(-1)*20*r}{28 + r*20} |
17,640 | n \cdot n = (100 \cdot a \cdot n)^2 = 10000 \cdot a \cdot n^2 |
21,401 | E[Y] \cdot 4 + 3 \cdot E[X] = E[Y \cdot 4 + 3 \cdot X] |
12,753 | \left(q - (q + (q \cdot ...)^{\frac{1}{2}})^{1 / 2}\right)^{\frac{1}{2}} = \dfrac12 \cdot \left(\left(-1\right) + (((-1) + q) \cdot 4 + 1)^{\dfrac{1}{2}}\right) |
-7,249 | \frac{3\cdot 10^{-1}}{8}\cdot \frac{1}{9}\cdot 2 = 1/120 |
-25,808 | \dfrac{5}{3\cdot 7} = \dfrac{1}{21}\cdot 5 |
10,215 | \frac{20}{2} \cdot \frac{1}{100} = \frac{1}{5 \cdot 2} = 1/10 |
21,770 | 1/\left(a\cdot b\right) = \tfrac{1}{a\cdot b} = \tfrac{1}{b\cdot a} |
-20,650 | \frac{10}{10}\cdot \left(7\cdot r + (-1)\right)/3 = (10\cdot \left(-1\right) + r\cdot 70)/30 |
10,097 | 0 = \tan{2 \cdot y} + \tan{y} \Rightarrow \tan{y} = 0 |
27,177 | \frac{1}{(2 + 2 \cdot l) \cdot (1 + 2 \cdot l)} = \frac{1}{(l \cdot 2 + 2)!} \cdot (2 \cdot l)! |
-20,812 | \frac{70}{-r*14 + 56*(-1)} = 7/7*\frac{10}{-2*r + 8*\left(-1\right)} |
27,680 | \dfrac{1}{30} \times 10 = \frac{1}{3} |
-19,925 | -1.34 = -\frac{1}{50}67 |
-22,927 | 49/70 = 7\cdot 7/(10\cdot 7) |
-5,540 | \dfrac{5}{3\cdot (r + 2)} = \frac{5}{3\cdot r + 6} |
-1,458 | \frac{8 \cdot \dfrac17}{\dfrac15 \cdot (-7)} = \frac87 \cdot (-5/7) |
-4,998 | 10^{-3 + 5} \cdot 39.5 = 10^2 \cdot 39.5 |
-1,116 | -\frac{1}{42} \cdot 40 = \frac{(-40) \cdot \frac12}{42 \cdot \frac12} = -\tfrac{20}{21} |
11,211 | -\dfrac{1}{2} \cdot 9 = -\frac92 |
10,819 | \sin(H*3) = \sin(3 H) |
6,001 | (37 + r)*\left(r + 37*(-1)\right) = r^2 - 37^2 |
8,768 | -(6 \cdot i_2 + 1) + 6 \cdot i_1 + 1 = 2 \cdot (3 \cdot i_1 - 3 \cdot i_2) |
437 | (a + b) \left(a + b\right) = b^2 + a^2 + ba + ab |
37 | (c - h)^2 + 4ch = (h + c) \cdot (h + c) |
17,102 | \left(g - b\right)^2 = g^2 - g \cdot b \cdot 2 + b^2 |
20,338 | \left(9 - 2\cdot x\right)\cdot x + 2\cdot x \cdot x + x\cdot 2 + 5\cdot \left(-1\right) = 5\cdot (-1) + 11\cdot x |
-10,247 | 76/100 = \tfrac{1}{25} \cdot 19 |
10,215 | \frac{20}{2}1/100 = \dfrac{1}{5 \cdot 2} = 1/10 |
4,513 | ( s, m) + \left( \phi, x\right) = ( s + \phi, m + x) |
671 | 1518 = (\frac{13}{20} + 12) \cdot 20 \cdot 6 |
6,683 | x^{\frac{1}{2}} = \frac{1}{2*x^{1 / 2}} = \frac{1}{2*x^{1/2}} |
-8,008 | (-32 + 96\cdot i - 32\cdot i + 96\cdot (-1))/32 = \dfrac{1}{32}\cdot (-128 + 64\cdot i) = -4 + 2\cdot i |
-2,849 | 2^{\frac{1}{2}} + 3\cdot 2^{1 / 2} = 2^{\frac{1}{2}}\cdot 9^{\dfrac{1}{2}} + 2^{\frac{1}{2}} |
8,565 | 44*0.39/0.357 = 48.067*\cdots \approx 48 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.