id
int64
-30,985
55.9k
text
stringlengths
5
437k
21,341
\frac{1}{15}\cdot 8 = \frac15 + 1/3
-29,105
-35 = 5 \left(-7\right)
24,501
M \cdot M/M = M
26,556
y = x rightarrow e^y = e^x
-15,299
\frac{1}{1/k*\frac{1}{q^5}}*k * k * k = \frac{k^3}{\frac{1}{k}*\tfrac{1}{q^5}}
30,332
0.1 = 0.011111*\dots
5,977
-x * x + z^2 = 1 rightarrow \sqrt{1 + x^2} = z
-6,118
10/10\cdot \frac{2}{(l + 6\cdot (-1))\cdot \left(l + 10\right)} = \frac{1}{10\cdot (l + 6\cdot (-1))\cdot (l + 10)}\cdot 20
23,434
\dfrac{2}{1 + 2} = \frac{1}{3}2 \gt 1/2
4,380
(w_2 + w_1) (x + T) = (x + T) w_1 + (T + x) w_2
21,169
y \cdot y \cdot y - 3 \cdot y \cdot y - y + (-1) = (y + (-1))^3 - 3 \cdot y + 1 - y + (-1) = (y + (-1))^3 - 4 \cdot (y + (-1)) + 4 \cdot \left(-1\right)
-23,064
\frac{1}{4}\cdot 7 = \frac12\cdot 7 / 2
-2,900
2 \cdot \sqrt{13} = (3 \cdot (-1) + 5) \cdot \sqrt{13}
39,229
(-1)\cdot (-1) + 3 = 4
-10,759
15 = 96 - 20*x + 24 = -20*x + 120
-3,867
\frac{p^4 \cdot 90}{10 \cdot p} = 90/10 \cdot \frac1p \cdot p^4
-2,896
-7^{\frac{1}{2}} + 4^{\dfrac{1}{2}}\cdot 7^{\frac{1}{2}} = -7^{1 / 2} + 2\cdot 7^{\dfrac{1}{2}}
31,828
\gamma \cdot \alpha + x \cdot \alpha = (x + \gamma) \cdot \alpha
23,441
\frac{-x^{n + 1} + 1}{-x + 1} = 1 + x + x^2 + \cdots + x^n
12,741
1 + 1/2 + 1/4 + \dotsm + \frac{1}{2^m} = -\frac{1}{2^m} + 2
5,137
X * X - U^2 = (-U + X)*(U + X)
37,562
{n \choose i}\cdot i = n\cdot {\left(-1\right) + n \choose (-1) + i}
-4,295
\frac{k^2\cdot 40}{k^3\cdot 36} = 40/36\cdot \frac{1}{k^3}\cdot k \cdot k
4,295
\frac{\partial}{\partial z} e^{z\times b + \sinh(h\times z)} = e^{\sinh(z\times h) + b\times z}\times \left(h\times \cosh(h\times z) + b\right)
-20,558
\frac{9 \times (-1) - 9 \times k}{3 \times k + 6 \times (-1)} = \frac{1}{k + 2 \times (-1)} \times (3 \times (-1) - 3 \times k) \times \frac{3}{3}
-6,102
\frac{1}{8*(-1) + 2*x} = \dfrac{1}{2*(4*(-1) + x)}
-11,765
64/49 = (\frac17*8) * (\frac17*8)
-927
\frac72 = 7/2
-1,196
\frac{6}{15} = \frac{6 \cdot \frac13}{15 \cdot 1/3} = 2/5
-4,612
\tfrac{19 \cdot (-1) + 5 \cdot z}{5 \cdot (-1) + z^2 - 4 \cdot z} = \frac{4}{1 + z} + \frac{1}{z + 5 \cdot (-1)}
8,883
\frac{16}{81} = (2/3)^4 = 1/\frac{81}{16}
-1,374
\dfrac{1}{7/4 \cdot 7} = 1/7 \cdot 4/7
-15,927
8/10 - 8 \cdot 9/10 = -64/10
11,351
(l + 1)/2 - \frac{l}{2} = \frac{1}{2} = l/2 - \frac{1}{2}\cdot (l + \left(-1\right))
16,695
(5 + 2 + 1 + 1) \times (3 + 1 + 1) \times \left(2 + 1\right) \times (1 + 1) = 270
13,243
2 \cdot 2^w = 2^{1 + w}
-19,630
\frac{1/2}{2} \cdot 3 = \frac{1}{2 \cdot 2/3}
18,305
(2^{20})^{10} = 2^{20}*2^{20} \ldots*2^{20}
31,239
\dfrac{1}{\theta^2} = \mathbb{E}\left(\frac{1}{\theta^2}\right)
15,355
\frac{1}{(u + \left(-1\right))\cdot \left(u + 1\right)} = \frac{1}{u^2 + (-1)}
25,698
468 = 3^2 \times 2^2 \times 13
13,767
(-3\cdot 10^4 + 31415)\cdot 10 + 9 = 14159
874
\frac{\mathrm{d}W}{\mathrm{d}X} = \dfrac{1}{X + W} (3 X - W) = \frac{3 - W/X}{1 + \frac1X W}
19,583
\frac{c^m}{3} = c^m/3 = -c\cdot c^m = -c^{m + 1}
17,903
100 = 89 + 1 \cdot 23 + 4(-1) + 5 + 6(-1) + 7(-1)
48,319
-\sin{\theta} = \sin{-\theta}
37,070
\sin{y}*\cos{y}*2 = \sin{2*y}
8,102
2 = \left(\dfrac13\cdot (d \cdot d \cdot d + h^3 + c^3)\right)^{1/3} \geq \frac{1}{3}\cdot \left(d + h + c\right)
13,020
(x + 6) \cdot (x + 4 \cdot (-1)) = x^2 + x \cdot 2 + 24 \cdot \left(-1\right)
1,246
\sin(-x)/((-1) x) = \frac{\sin(x)}{x}
-23,611
5/6 \cdot \dfrac59 = \dfrac{1}{54} \cdot 25
25,254
\binom{n}{k} = \binom{(-1) + n}{k + (-1)} \cdot n/k
4,286
m_2*n + m_1*n = m_2*n + n*m_1
7,328
\tfrac{1}{1 - x x} = 1 + x^2 + x^4 + x^6 ...
-6,725
\frac{9}{100} + 8/10 = 80/100 + \dfrac{1}{100}9
34,389
6 + x \cdot 6 = x \cdot 6 + 3 \cdot 2
94
B\cdot B + B\cdot B + B\cdot B = 3\cdot B^2 = 3\cdot B\cdot B > B
34,766
1/(63\cdot 32) = \frac{1}{2016}
12,935
4 \cdot y^3 - 7 \cdot y + 3 \cdot (-1) = (y + 1) \cdot \left(g_1 \cdot y^2 + g_2 \cdot y + c\right) = g_1 \cdot y^3 + g_2 \cdot y^2 + c \cdot y + g_1 \cdot y^2 + g_2 \cdot y + c
-1,589
\pi \frac{7}{4} = -\frac14\pi + 2\pi
21,253
\dfrac{5}{60} rightarrow 1/2\cdot 3/5
1,196
\tan{A} = \frac{\sqrt{3} \times 1/2}{\left(-1\right) \times \frac12} = \sin{A}/\cos{A}
32,548
\tfrac{20}{9} = \frac{1}{9} \cdot 4 \cdot (-\frac13 + 2)^2 + 5/9 \cdot \left(-1/3 - 1\right)^2
10,760
2*\alpha + 1 + x*2 + 1 = (\alpha + x + 1)*2
-2,612
\sqrt{2} \sqrt{9} + \sqrt{2} \sqrt{16} = 4\sqrt{2} + 3\sqrt{2}
22,169
X^2-8X+25=(X-\alpha^2)(X-\beta^2)=X^2-(\alpha^2+\beta^2)X+\alpha^2\beta^2
32,265
b \cdot 2 \cdot a = -(b^2 + a^2) + (a + b) \cdot (a + b)
15,046
\frac{z^2}{z + 2 \cdot \left(-1\right)} = \dfrac{z^2}{2 \cdot (-1) + z}
33,318
\frac{1}{\sqrt{x}} \cdot \sin(x) = \sqrt{x} \cdot \sin(x)/x
7,883
\frac{l + 1}{2^{l + 1}} = \dfrac{1}{2^{l + 1}}*(3*(-1) + l*2 + 4 - l)
-5,822
\frac{1}{(2*(-1) + k)*2}*3 = \dfrac{3}{4*(-1) + k*2}
11,764
\frac{dy}{dz} = \frac{3*z^2}{3*y^2} = \frac{1}{y^2}*z * z
6,965
\frac{1}{2*(-1) + x}*(y*N + x^3 - x*N*y - 2*x^2 + 2*y*x) = \tfrac{-N*y + 4*y}{x + 2*(-1)} + x^2 - y*N + y*2
27,828
y^2 \cdot h + h = y + y \cdot h \cdot h \implies y = h
23,061
r^{\dfrac13} + 2*(-1) = d \Rightarrow r = (d + 2)^3
20,152
s*x*r = r*s*x
8,585
b\cdot x = 1/(b\cdot x) = \frac{1}{x\cdot b} = x\cdot b
-27,037
\sum_{n=1}^\infty \frac{1}{n*6^n} \left(1 + 5\right)^n*(n + 2) = \sum_{n=1}^\infty \frac{6^n}{n*6^n} (n + 2) = \sum_{n=1}^\infty (n + 2)/n
-7,123
4/10*\frac39*2/8 = 1/30
-23,377
\dfrac{9}{32} = 3/8\cdot \frac{3}{4}
28,727
2^{k + 2} + 4\cdot (-1) = (2^{k + 1} + 2\cdot \left(-1\right))\cdot 2
43,272
\binom{13 + 3 + \left(-1\right)}{3 + (-1)} = \binom{15}{2}
-20,335
\tfrac{1}{7\cdot x + 14\cdot (-1)}\cdot \left(-4\cdot x + 8\right) = \dfrac{x + 2\cdot (-1)}{x + 2\cdot (-1)}\cdot (-\frac{4}{7})
-8,803
48\cdot \pi = 30\cdot \pi + 9\cdot \pi + 9\cdot \pi
6,131
\cos(\dfrac{1}{4}\cdot \pi + z - \dfrac14\cdot \pi) = \cos\left(z\right)
-1,979
\pi/3 + \pi/6 = \frac{\pi}{2}
-19,384
\frac{7\cdot \frac{1}{4}}{3\cdot 1/4} = 7/4\cdot 4/3
3,674
24\cdot \mathrm{i} - 7 = \left(4\cdot \mathrm{i} + 3\right)^2
3,075
1 - z*2 \lt (-1) - z \Rightarrow 2 < z
-20,769
-5/6 \frac{6x + 10 (-1)}{10 \left(-1\right) + 6x} = \frac{50 - x \cdot 30}{36 x + 60 (-1)}
3,204
(\sqrt{a + z_1})^2 = (\sqrt{F + z_2})^2 \Rightarrow z_2 + F = z_1 + a
-6,207
\frac{4\cdot q}{(q + 3\cdot (-1))\cdot \left(q + 8\right)} = \frac{4\cdot q}{q^2 + q\cdot 5 + 24\cdot \left(-1\right)}
2,241
p - 1/2 = p - \tfrac12\left(p + 1\right) = (p + (-1))/2
35,149
-a \cdot 2 + 5 + 2 \cdot (-1) = -2 \cdot a + 3
13,966
\cos(\operatorname{asin}(x)) = \left(1 - x^2\right)^{\tfrac{1}{2}}
11,347
f_2 + f_3 + \dotsm + f_l + f_{l + 1} = f_2 + f_3 + \dotsm + f_l + f_{l + 1}
-6,995
\frac19 \cdot 4 = 4/9
7,740
\cos^2{\theta} = (\cos{2\theta} + 1)/2
35,343
-((-1) + t) = 1 - t
-578
\left(e^{i\cdot \pi/3}\right)^{14} = e^{\frac{i\cdot \pi}{3}\cdot 14}