id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
21,341 | \frac{1}{15}\cdot 8 = \frac15 + 1/3 |
-29,105 | -35 = 5 \left(-7\right) |
24,501 | M \cdot M/M = M |
26,556 | y = x rightarrow e^y = e^x |
-15,299 | \frac{1}{1/k*\frac{1}{q^5}}*k * k * k = \frac{k^3}{\frac{1}{k}*\tfrac{1}{q^5}} |
30,332 | 0.1 = 0.011111*\dots |
5,977 | -x * x + z^2 = 1 rightarrow \sqrt{1 + x^2} = z |
-6,118 | 10/10\cdot \frac{2}{(l + 6\cdot (-1))\cdot \left(l + 10\right)} = \frac{1}{10\cdot (l + 6\cdot (-1))\cdot (l + 10)}\cdot 20 |
23,434 | \dfrac{2}{1 + 2} = \frac{1}{3}2 \gt 1/2 |
4,380 | (w_2 + w_1) (x + T) = (x + T) w_1 + (T + x) w_2 |
21,169 | y \cdot y \cdot y - 3 \cdot y \cdot y - y + (-1) = (y + (-1))^3 - 3 \cdot y + 1 - y + (-1) = (y + (-1))^3 - 4 \cdot (y + (-1)) + 4 \cdot \left(-1\right) |
-23,064 | \frac{1}{4}\cdot 7 = \frac12\cdot 7 / 2 |
-2,900 | 2 \cdot \sqrt{13} = (3 \cdot (-1) + 5) \cdot \sqrt{13} |
39,229 | (-1)\cdot (-1) + 3 = 4 |
-10,759 | 15 = 96 - 20*x + 24 = -20*x + 120 |
-3,867 | \frac{p^4 \cdot 90}{10 \cdot p} = 90/10 \cdot \frac1p \cdot p^4 |
-2,896 | -7^{\frac{1}{2}} + 4^{\dfrac{1}{2}}\cdot 7^{\frac{1}{2}} = -7^{1 / 2} + 2\cdot 7^{\dfrac{1}{2}} |
31,828 | \gamma \cdot \alpha + x \cdot \alpha = (x + \gamma) \cdot \alpha |
23,441 | \frac{-x^{n + 1} + 1}{-x + 1} = 1 + x + x^2 + \cdots + x^n |
12,741 | 1 + 1/2 + 1/4 + \dotsm + \frac{1}{2^m} = -\frac{1}{2^m} + 2 |
5,137 | X * X - U^2 = (-U + X)*(U + X) |
37,562 | {n \choose i}\cdot i = n\cdot {\left(-1\right) + n \choose (-1) + i} |
-4,295 | \frac{k^2\cdot 40}{k^3\cdot 36} = 40/36\cdot \frac{1}{k^3}\cdot k \cdot k |
4,295 | \frac{\partial}{\partial z} e^{z\times b + \sinh(h\times z)} = e^{\sinh(z\times h) + b\times z}\times \left(h\times \cosh(h\times z) + b\right) |
-20,558 | \frac{9 \times (-1) - 9 \times k}{3 \times k + 6 \times (-1)} = \frac{1}{k + 2 \times (-1)} \times (3 \times (-1) - 3 \times k) \times \frac{3}{3} |
-6,102 | \frac{1}{8*(-1) + 2*x} = \dfrac{1}{2*(4*(-1) + x)} |
-11,765 | 64/49 = (\frac17*8) * (\frac17*8) |
-927 | \frac72 = 7/2 |
-1,196 | \frac{6}{15} = \frac{6 \cdot \frac13}{15 \cdot 1/3} = 2/5 |
-4,612 | \tfrac{19 \cdot (-1) + 5 \cdot z}{5 \cdot (-1) + z^2 - 4 \cdot z} = \frac{4}{1 + z} + \frac{1}{z + 5 \cdot (-1)} |
8,883 | \frac{16}{81} = (2/3)^4 = 1/\frac{81}{16} |
-1,374 | \dfrac{1}{7/4 \cdot 7} = 1/7 \cdot 4/7 |
-15,927 | 8/10 - 8 \cdot 9/10 = -64/10 |
11,351 | (l + 1)/2 - \frac{l}{2} = \frac{1}{2} = l/2 - \frac{1}{2}\cdot (l + \left(-1\right)) |
16,695 | (5 + 2 + 1 + 1) \times (3 + 1 + 1) \times \left(2 + 1\right) \times (1 + 1) = 270 |
13,243 | 2 \cdot 2^w = 2^{1 + w} |
-19,630 | \frac{1/2}{2} \cdot 3 = \frac{1}{2 \cdot 2/3} |
18,305 | (2^{20})^{10} = 2^{20}*2^{20} \ldots*2^{20} |
31,239 | \dfrac{1}{\theta^2} = \mathbb{E}\left(\frac{1}{\theta^2}\right) |
15,355 | \frac{1}{(u + \left(-1\right))\cdot \left(u + 1\right)} = \frac{1}{u^2 + (-1)} |
25,698 | 468 = 3^2 \times 2^2 \times 13 |
13,767 | (-3\cdot 10^4 + 31415)\cdot 10 + 9 = 14159 |
874 | \frac{\mathrm{d}W}{\mathrm{d}X} = \dfrac{1}{X + W} (3 X - W) = \frac{3 - W/X}{1 + \frac1X W} |
19,583 | \frac{c^m}{3} = c^m/3 = -c\cdot c^m = -c^{m + 1} |
17,903 | 100 = 89 + 1 \cdot 23 + 4(-1) + 5 + 6(-1) + 7(-1) |
48,319 | -\sin{\theta} = \sin{-\theta} |
37,070 | \sin{y}*\cos{y}*2 = \sin{2*y} |
8,102 | 2 = \left(\dfrac13\cdot (d \cdot d \cdot d + h^3 + c^3)\right)^{1/3} \geq \frac{1}{3}\cdot \left(d + h + c\right) |
13,020 | (x + 6) \cdot (x + 4 \cdot (-1)) = x^2 + x \cdot 2 + 24 \cdot \left(-1\right) |
1,246 | \sin(-x)/((-1) x) = \frac{\sin(x)}{x} |
-23,611 | 5/6 \cdot \dfrac59 = \dfrac{1}{54} \cdot 25 |
25,254 | \binom{n}{k} = \binom{(-1) + n}{k + (-1)} \cdot n/k |
4,286 | m_2*n + m_1*n = m_2*n + n*m_1 |
7,328 | \tfrac{1}{1 - x x} = 1 + x^2 + x^4 + x^6 ... |
-6,725 | \frac{9}{100} + 8/10 = 80/100 + \dfrac{1}{100}9 |
34,389 | 6 + x \cdot 6 = x \cdot 6 + 3 \cdot 2 |
94 | B\cdot B + B\cdot B + B\cdot B = 3\cdot B^2 = 3\cdot B\cdot B > B |
34,766 | 1/(63\cdot 32) = \frac{1}{2016} |
12,935 | 4 \cdot y^3 - 7 \cdot y + 3 \cdot (-1) = (y + 1) \cdot \left(g_1 \cdot y^2 + g_2 \cdot y + c\right) = g_1 \cdot y^3 + g_2 \cdot y^2 + c \cdot y + g_1 \cdot y^2 + g_2 \cdot y + c |
-1,589 | \pi \frac{7}{4} = -\frac14\pi + 2\pi |
21,253 | \dfrac{5}{60} rightarrow 1/2\cdot 3/5 |
1,196 | \tan{A} = \frac{\sqrt{3} \times 1/2}{\left(-1\right) \times \frac12} = \sin{A}/\cos{A} |
32,548 | \tfrac{20}{9} = \frac{1}{9} \cdot 4 \cdot (-\frac13 + 2)^2 + 5/9 \cdot \left(-1/3 - 1\right)^2 |
10,760 | 2*\alpha + 1 + x*2 + 1 = (\alpha + x + 1)*2 |
-2,612 | \sqrt{2} \sqrt{9} + \sqrt{2} \sqrt{16} = 4\sqrt{2} + 3\sqrt{2} |
22,169 | X^2-8X+25=(X-\alpha^2)(X-\beta^2)=X^2-(\alpha^2+\beta^2)X+\alpha^2\beta^2 |
32,265 | b \cdot 2 \cdot a = -(b^2 + a^2) + (a + b) \cdot (a + b) |
15,046 | \frac{z^2}{z + 2 \cdot \left(-1\right)} = \dfrac{z^2}{2 \cdot (-1) + z} |
33,318 | \frac{1}{\sqrt{x}} \cdot \sin(x) = \sqrt{x} \cdot \sin(x)/x |
7,883 | \frac{l + 1}{2^{l + 1}} = \dfrac{1}{2^{l + 1}}*(3*(-1) + l*2 + 4 - l) |
-5,822 | \frac{1}{(2*(-1) + k)*2}*3 = \dfrac{3}{4*(-1) + k*2} |
11,764 | \frac{dy}{dz} = \frac{3*z^2}{3*y^2} = \frac{1}{y^2}*z * z |
6,965 | \frac{1}{2*(-1) + x}*(y*N + x^3 - x*N*y - 2*x^2 + 2*y*x) = \tfrac{-N*y + 4*y}{x + 2*(-1)} + x^2 - y*N + y*2 |
27,828 | y^2 \cdot h + h = y + y \cdot h \cdot h \implies y = h |
23,061 | r^{\dfrac13} + 2*(-1) = d \Rightarrow r = (d + 2)^3 |
20,152 | s*x*r = r*s*x |
8,585 | b\cdot x = 1/(b\cdot x) = \frac{1}{x\cdot b} = x\cdot b |
-27,037 | \sum_{n=1}^\infty \frac{1}{n*6^n} \left(1 + 5\right)^n*(n + 2) = \sum_{n=1}^\infty \frac{6^n}{n*6^n} (n + 2) = \sum_{n=1}^\infty (n + 2)/n |
-7,123 | 4/10*\frac39*2/8 = 1/30 |
-23,377 | \dfrac{9}{32} = 3/8\cdot \frac{3}{4} |
28,727 | 2^{k + 2} + 4\cdot (-1) = (2^{k + 1} + 2\cdot \left(-1\right))\cdot 2 |
43,272 | \binom{13 + 3 + \left(-1\right)}{3 + (-1)} = \binom{15}{2} |
-20,335 | \tfrac{1}{7\cdot x + 14\cdot (-1)}\cdot \left(-4\cdot x + 8\right) = \dfrac{x + 2\cdot (-1)}{x + 2\cdot (-1)}\cdot (-\frac{4}{7}) |
-8,803 | 48\cdot \pi = 30\cdot \pi + 9\cdot \pi + 9\cdot \pi |
6,131 | \cos(\dfrac{1}{4}\cdot \pi + z - \dfrac14\cdot \pi) = \cos\left(z\right) |
-1,979 | \pi/3 + \pi/6 = \frac{\pi}{2} |
-19,384 | \frac{7\cdot \frac{1}{4}}{3\cdot 1/4} = 7/4\cdot 4/3 |
3,674 | 24\cdot \mathrm{i} - 7 = \left(4\cdot \mathrm{i} + 3\right)^2 |
3,075 | 1 - z*2 \lt (-1) - z \Rightarrow 2 < z |
-20,769 | -5/6 \frac{6x + 10 (-1)}{10 \left(-1\right) + 6x} = \frac{50 - x \cdot 30}{36 x + 60 (-1)} |
3,204 | (\sqrt{a + z_1})^2 = (\sqrt{F + z_2})^2 \Rightarrow z_2 + F = z_1 + a |
-6,207 | \frac{4\cdot q}{(q + 3\cdot (-1))\cdot \left(q + 8\right)} = \frac{4\cdot q}{q^2 + q\cdot 5 + 24\cdot \left(-1\right)} |
2,241 | p - 1/2 = p - \tfrac12\left(p + 1\right) = (p + (-1))/2 |
35,149 | -a \cdot 2 + 5 + 2 \cdot (-1) = -2 \cdot a + 3 |
13,966 | \cos(\operatorname{asin}(x)) = \left(1 - x^2\right)^{\tfrac{1}{2}} |
11,347 | f_2 + f_3 + \dotsm + f_l + f_{l + 1} = f_2 + f_3 + \dotsm + f_l + f_{l + 1} |
-6,995 | \frac19 \cdot 4 = 4/9 |
7,740 | \cos^2{\theta} = (\cos{2\theta} + 1)/2 |
35,343 | -((-1) + t) = 1 - t |
-578 | \left(e^{i\cdot \pi/3}\right)^{14} = e^{\frac{i\cdot \pi}{3}\cdot 14} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.