id
int64
-30,985
55.9k
text
stringlengths
5
437k
744
\frac{1}{4} = \left(\frac12\right)^2
-18,483
4*r + 2 = 10*(3*r + 7*(-1)) = 30*r + 70*\left(-1\right)
-9,125
x*x*2*3*3*3 = x * x*54
-2,203
4/11 - 1/11 = \dfrac{3}{11}
13,085
W_2\cdot Q\cdot |W_1| = Q\cdot W_2\cdot |W_1|
12,794
1 - \frac{2}{1 + y} = \dfrac{(-1) + y}{1 + y}
20,565
\frac17\cdot 23 = -\frac{12}{7} + 5
19,814
25^{n + 2} - 5^{2 \cdot n + 2} = ((-1) + 25) \cdot 5^{2 \cdot n + 2}
-1,368
\left(\dfrac{1}{7}\cdot \left(-8\right)\right)/(1/3\cdot (-8)) = -\frac{8}{7}\cdot (-3/8)
-2,108
\pi\cdot 7/12 - 5/12 \pi = \frac{\pi}{6}
27,304
4 + C^4 = (C^2 + 2*C + 2)*(2 + C * C - 2*C)
-2,691
\sqrt{6}*(\left(-1\right) + 3) = 2\sqrt{6}
-18,111
9(-1) + 79 = 70
-6,058
\frac{2}{40 \left(-1\right) + 4d} = \frac{2}{4(d + 10 \left(-1\right))}
22,608
2 + x\cdot 3 = 2 + x + 2\cdot x
31,892
\left(\sqrt{u} - u\right)/(\sqrt{u}) + \frac{1}{1}\cdot (1 - \sqrt{u}) = 2\cdot (-\sqrt{u} + 1)
3,291
\left(\frac{z_2 \cdot z_1 \cdot 2}{z_1^2 + z_2^2} \cdot 1 = -1 \Rightarrow (z_2 + z_1)^2 = 0\right) \Rightarrow z_2 = -z_1
-20,583
-3/8\cdot \frac{7 + t}{t + 7} = \dfrac{-t\cdot 3 + 21\cdot (-1)}{t\cdot 8 + 56}
-9,134
-5\cdot 2\cdot 2\cdot 2 + p\cdot 2\cdot 2\cdot 5 = 40\cdot \left(-1\right) + p\cdot 20
-10,537
4 = -4 \cdot \tau + 40 + 16 \cdot (-1) = -4 \cdot \tau + 24
-20,366
\frac{1}{6 + 9\cdot t}\cdot (t\cdot 9 + 6)/5 = \dfrac{1}{30 + 45\cdot t}\cdot (t\cdot 9 + 6)
2,789
\frac{3}{-3\cdot z + 1} - \frac{1}{-2\cdot z + 1}\cdot 2 = \dfrac{1}{6\cdot z^2 + 1 - z\cdot 5}
15,336
(3^y)^2 = (3^2)^y
18,724
10 \cdot \frac{1}{4323} = \frac{10}{4323}
-28,858
\frac{(109+100)(109-100)}{9} = \frac{209 \cdot 9}{9}
16,241
\binom{l}{x} = l\binom{(-1) + l}{x + (-1)}/x
7,514
n - \sum_{k=1}^n \cos{ky} = \sum_{k=1}^n (1 - \cos{ky}) = 2\sum_{k=1}^n \sin^2{\frac{ky}{2}}
8,117
f = \dfrac{1}{2}\cdot (\bar{f} + f) + (f - \bar{f})/2
12,503
(a - f)\cdot \left(a + f\right) = -f^2 + a^2
33,636
9990 - 21^3 = 9990 + 9261 (-1) = 729 = 9 \cdot 9^2
6,523
-2i\pi = -6i\pi + 4\pi i
-24,888
1/18 = \frac{1}{6\cdot \pi}\cdot s\cdot 6\cdot \pi = s
20,663
(x - b)\cdot \left(b + x\right) = x^2 - b^2
37,116
2^{775}*3^{310}*7^{155} = 2016^{155}
15,631
0 = x + a*\left(g' + (-1)\right) \Rightarrow -\frac{x}{1 - g'} = a
-3,063
3*\sqrt{2} = \sqrt{2}*(2*\left(-1\right) + 5)
2,845
\sin{x}=\sin({x-a+a})=\sin({x-a})\cos{a}+\cos({x-a})\sin{a}
6,329
-x^6 + 1 = (-x^2 + 1)\cdot (x^4 + 1 + x^2)
1,346
\left(Y \cdot Y^T\right)^T = \left(Y^T\right)^T \cdot Y^T = Y \cdot Y^T
-20,064
\frac{2 - 2 \cdot y}{4 \cdot \left(-1\right) + 4 \cdot y} = \dfrac{2 \cdot y + 2 \cdot (-1)}{y \cdot 2 + 2 \cdot (-1)} \cdot (-\dfrac{1}{2})
-15,828
-9/10*7 + \frac{1}{10}*8 = -55/10
-3,032
3 \cdot \sqrt{6} = ((-1) + 4) \cdot \sqrt{6}
-15,999
-\frac{5}{10} \cdot 5 + \dfrac{5}{10} \cdot 6 = 5/10
15,889
-\frac{3}{32} + \frac{1}{16} \cdot 9 + \dfrac{3}{8} = 27/32
-1,567
\tfrac{1}{4}\cdot 7 = \dfrac{7}{4}
18,374
\frac{240}{30} + 1 = 3^2
16,848
(r + 2)\cdot (r + 1)\cdot r = r\cdot (r + 1)\cdot (r + 3 - r + (-1))/4\cdot (r + 2)
8,609
\dfrac{1}{m_2!\cdot (-m_2 + m_1)!}\cdot m_1! = \binom{m_1}{m_2}
17,842
\cos(3\cdot x) = \cos(x\cdot 2 + x)
459
((-1) + b)/b = \tfrac{1}{\frac{1}{(-1) + b} (b + (-1) + 1)}
48,732
(3 \cdot \frac{d}{dS} S^2 + \frac{d1}{dS})/2 = (3 \cdot 2 \cdot S + 0)/2 = \frac{1}{2} \cdot 6 \cdot S = 3 \cdot S
15,541
2 \cdot z + 5 \cdot y + 1 = 2 \cdot z + 5 \cdot y + 5 + 4 \cdot (-1) = 2 \cdot \left(z + 2 \cdot (-1)\right) + 5 \cdot (y + 1)
46,187
2 = 2^{1 / 2} \cdot 2^{\frac{1}{2}}
5,657
( x \cdot a - b \cdot b', a \cdot b' + a \cdot b') = ( a, b) \cdot (x + b')
-29,362
g^2 - x^2 = (g - x) \cdot \left(x + g\right)
-3,726
\dfrac{s^5}{s^4}\cdot 40/5 = \frac{s^5\cdot 40}{5\cdot s^4}
6,321
\dfrac{1^{-1}}{1/(\frac{1}{25})} = \dfrac{1}{25}
-488
\pi \cdot 3/4 = \pi \cdot \dfrac{19}{4} - 4 \cdot \pi
9,773
0 = (a + b + c)^2 = 1 + 2 \cdot (a \cdot b + b \cdot c + c \cdot a)
-28,801
\frac{π\cdot 2}{π\cdot 2\cdot 1/2.5} = 2.5
1,011
\frac{n}{n^2 + 2*n + 1} = \tfrac{1}{n + 2 + \frac{1}{n^2}} \geq \frac{1}{n + 3}
-1,716
\dfrac{11}{6} \pi = -\frac{1}{12} \pi + \pi \frac{1}{12} 23
14,778
3 \cdot \sin{z} - \sin^3{z} \cdot 4 = \sin{3 \cdot z}
202
\operatorname{E}\left[\bar{B}\right] = \bar{B}
13,155
l - (3 + \left(-1\right))\cdot 3 = 6\cdot \left(-1\right) + l
20,910
237 = 2^6\cdot 3 + 2^4\cdot 3 + 3\cdot (-1)
-7,845
\frac{-17 \times i - 1}{-i - 3} \times \frac{i - 3}{-3 + i} = \dfrac{1}{-3 - i} \times (-1 - 17 \times i)
4,930
252 - 144*3^{1 / 2} = (-3^{\frac{1}{2}} + 3)^4
7,662
\frac16 \cdot (k + 1) \cdot 6 \cdot \left(k + 3\right) = (k + 1 + 2) \cdot (k + 1)
14,254
\sqrt{2 + x} + 2(-1) = y \implies (2 + y)^2 + 2(-1) = x
20,246
\left(2 \cdot (-1) + x^3\right)^2 = 4 + x^6 - 4 \cdot x^3
-2,813
((-1) + 3) \times \sqrt{10} = 2 \times \sqrt{10}
-3,399
7\cdot 7^{\frac{1}{2}} = ((-1) + 5 + 3)\cdot 7^{1 / 2}
9,977
2\cdot \pi\cdot X/2 = X\cdot \pi
10,306
0 = z\cdot 2 \Rightarrow z = 0
-18,371
\dfrac{r^2 + 7\cdot r}{r^2 + r\cdot 14 + 49} = \frac{r}{(r + 7)\cdot \left(7 + r\right)}\cdot \left(7 + r\right)
24,927
5 \cdot y \cdot y = 247^3 + 273 \cdot \left(-1\right) + 9 \Rightarrow y^2 = 3013797
22,522
Ag = gA
2,737
(1 + a) \cdot \left(1 - a\right) = 1 - a^2
15,184
|-y + y \cdot y| = |y| |y + (-1)|
-20,271
4/4 \cdot \frac{1}{-x \cdot 2 + 6} \cdot (6 \cdot (-1) - 7 \cdot x) = \frac{-x \cdot 28 + 24 \cdot \left(-1\right)}{-x \cdot 8 + 24}
51,713
77 = 7\times 11
216
c \cdot c = 1 \neq c
15,777
x - \frac{1}{x^2 + 1} \times (4 + x) = \frac{1}{1 + x^2} \times (4 \times (-1) + x^3)
20,663
\left(d + a\right)*(a - d) = a^2 - d^2
30,857
\sin{3 \cdot (A + \frac{1}{3} \cdot \pi \cdot 2)} = \sin{A \cdot 3}
14,495
1 + s + s^2 - s^3 + s + s^2 = -s^3 + 1
-3,860
\frac{12\cdot p^3}{p\cdot 42} = 12/42\cdot \frac{p^3}{p}
2,412
396396 = 3^2\cdot 2 \cdot 2\cdot 7\cdot 11^2\cdot 13
20,994
\mathbb{P}\left(y\right) = y^4 - 7*y^3 + 4*y * y + 39*y + 45*(-1) = (y + 5*(-1))*(y + 3*\left(-1\right))*(y * y + y + 3*(-1))
-233
\dfrac{7!}{(7 + 5\times (-1))!\times 5!} = {7 \choose 5}
347
84 = 2*(3 + 4 + 5 + 6 + 7 + 8 + 9)
-29,372
(x + 2) \cdot \left(x + 5\right) = x^2 + 5 \cdot x + 2 \cdot x + 10 = x^2 + 7 \cdot x + 10
11,413
\sqrt{3} \cdot 9 + 11 \cdot \sqrt{2} = \left(\sqrt{2} + \sqrt{3}\right)^3
23,444
W^U \cdot E \cdot W = W^U \cdot E \cdot E \cdot W = W^U \cdot E^U \cdot E \cdot W = (E \cdot W)^U \cdot E \cdot W
33,776
\cos^2 x=1-\sin^2 x
10,880
\left(x + y\right) \left(x + y\right) = (x + y) (x + y) = x^2 + 2 x y + y^2
38,797
-100 = 100\cdot \left(-6\right) + 100\cdot (-1) + 100\cdot 2 + 100\cdot 3 + 100\cdot (-4) + 100\cdot 5
9,045
\cos(3\cdot x) = \cos\left(x\cdot 3\right)
19,147
2\cdot \sin\left(A\right)\cdot \cos(A) = \sin(A\cdot 2)