id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
744 | \frac{1}{4} = \left(\frac12\right)^2 |
-18,483 | 4*r + 2 = 10*(3*r + 7*(-1)) = 30*r + 70*\left(-1\right) |
-9,125 | x*x*2*3*3*3 = x * x*54 |
-2,203 | 4/11 - 1/11 = \dfrac{3}{11} |
13,085 | W_2\cdot Q\cdot |W_1| = Q\cdot W_2\cdot |W_1| |
12,794 | 1 - \frac{2}{1 + y} = \dfrac{(-1) + y}{1 + y} |
20,565 | \frac17\cdot 23 = -\frac{12}{7} + 5 |
19,814 | 25^{n + 2} - 5^{2 \cdot n + 2} = ((-1) + 25) \cdot 5^{2 \cdot n + 2} |
-1,368 | \left(\dfrac{1}{7}\cdot \left(-8\right)\right)/(1/3\cdot (-8)) = -\frac{8}{7}\cdot (-3/8) |
-2,108 | \pi\cdot 7/12 - 5/12 \pi = \frac{\pi}{6} |
27,304 | 4 + C^4 = (C^2 + 2*C + 2)*(2 + C * C - 2*C) |
-2,691 | \sqrt{6}*(\left(-1\right) + 3) = 2\sqrt{6} |
-18,111 | 9(-1) + 79 = 70 |
-6,058 | \frac{2}{40 \left(-1\right) + 4d} = \frac{2}{4(d + 10 \left(-1\right))} |
22,608 | 2 + x\cdot 3 = 2 + x + 2\cdot x |
31,892 | \left(\sqrt{u} - u\right)/(\sqrt{u}) + \frac{1}{1}\cdot (1 - \sqrt{u}) = 2\cdot (-\sqrt{u} + 1) |
3,291 | \left(\frac{z_2 \cdot z_1 \cdot 2}{z_1^2 + z_2^2} \cdot 1 = -1 \Rightarrow (z_2 + z_1)^2 = 0\right) \Rightarrow z_2 = -z_1 |
-20,583 | -3/8\cdot \frac{7 + t}{t + 7} = \dfrac{-t\cdot 3 + 21\cdot (-1)}{t\cdot 8 + 56} |
-9,134 | -5\cdot 2\cdot 2\cdot 2 + p\cdot 2\cdot 2\cdot 5 = 40\cdot \left(-1\right) + p\cdot 20 |
-10,537 | 4 = -4 \cdot \tau + 40 + 16 \cdot (-1) = -4 \cdot \tau + 24 |
-20,366 | \frac{1}{6 + 9\cdot t}\cdot (t\cdot 9 + 6)/5 = \dfrac{1}{30 + 45\cdot t}\cdot (t\cdot 9 + 6) |
2,789 | \frac{3}{-3\cdot z + 1} - \frac{1}{-2\cdot z + 1}\cdot 2 = \dfrac{1}{6\cdot z^2 + 1 - z\cdot 5} |
15,336 | (3^y)^2 = (3^2)^y |
18,724 | 10 \cdot \frac{1}{4323} = \frac{10}{4323} |
-28,858 | \frac{(109+100)(109-100)}{9} = \frac{209 \cdot 9}{9} |
16,241 | \binom{l}{x} = l\binom{(-1) + l}{x + (-1)}/x |
7,514 | n - \sum_{k=1}^n \cos{ky} = \sum_{k=1}^n (1 - \cos{ky}) = 2\sum_{k=1}^n \sin^2{\frac{ky}{2}} |
8,117 | f = \dfrac{1}{2}\cdot (\bar{f} + f) + (f - \bar{f})/2 |
12,503 | (a - f)\cdot \left(a + f\right) = -f^2 + a^2 |
33,636 | 9990 - 21^3 = 9990 + 9261 (-1) = 729 = 9 \cdot 9^2 |
6,523 | -2i\pi = -6i\pi + 4\pi i |
-24,888 | 1/18 = \frac{1}{6\cdot \pi}\cdot s\cdot 6\cdot \pi = s |
20,663 | (x - b)\cdot \left(b + x\right) = x^2 - b^2 |
37,116 | 2^{775}*3^{310}*7^{155} = 2016^{155} |
15,631 | 0 = x + a*\left(g' + (-1)\right) \Rightarrow -\frac{x}{1 - g'} = a |
-3,063 | 3*\sqrt{2} = \sqrt{2}*(2*\left(-1\right) + 5) |
2,845 | \sin{x}=\sin({x-a+a})=\sin({x-a})\cos{a}+\cos({x-a})\sin{a} |
6,329 | -x^6 + 1 = (-x^2 + 1)\cdot (x^4 + 1 + x^2) |
1,346 | \left(Y \cdot Y^T\right)^T = \left(Y^T\right)^T \cdot Y^T = Y \cdot Y^T |
-20,064 | \frac{2 - 2 \cdot y}{4 \cdot \left(-1\right) + 4 \cdot y} = \dfrac{2 \cdot y + 2 \cdot (-1)}{y \cdot 2 + 2 \cdot (-1)} \cdot (-\dfrac{1}{2}) |
-15,828 | -9/10*7 + \frac{1}{10}*8 = -55/10 |
-3,032 | 3 \cdot \sqrt{6} = ((-1) + 4) \cdot \sqrt{6} |
-15,999 | -\frac{5}{10} \cdot 5 + \dfrac{5}{10} \cdot 6 = 5/10 |
15,889 | -\frac{3}{32} + \frac{1}{16} \cdot 9 + \dfrac{3}{8} = 27/32 |
-1,567 | \tfrac{1}{4}\cdot 7 = \dfrac{7}{4} |
18,374 | \frac{240}{30} + 1 = 3^2 |
16,848 | (r + 2)\cdot (r + 1)\cdot r = r\cdot (r + 1)\cdot (r + 3 - r + (-1))/4\cdot (r + 2) |
8,609 | \dfrac{1}{m_2!\cdot (-m_2 + m_1)!}\cdot m_1! = \binom{m_1}{m_2} |
17,842 | \cos(3\cdot x) = \cos(x\cdot 2 + x) |
459 | ((-1) + b)/b = \tfrac{1}{\frac{1}{(-1) + b} (b + (-1) + 1)} |
48,732 | (3 \cdot \frac{d}{dS} S^2 + \frac{d1}{dS})/2 = (3 \cdot 2 \cdot S + 0)/2 = \frac{1}{2} \cdot 6 \cdot S = 3 \cdot S |
15,541 | 2 \cdot z + 5 \cdot y + 1 = 2 \cdot z + 5 \cdot y + 5 + 4 \cdot (-1) = 2 \cdot \left(z + 2 \cdot (-1)\right) + 5 \cdot (y + 1) |
46,187 | 2 = 2^{1 / 2} \cdot 2^{\frac{1}{2}} |
5,657 | ( x \cdot a - b \cdot b', a \cdot b' + a \cdot b') = ( a, b) \cdot (x + b') |
-29,362 | g^2 - x^2 = (g - x) \cdot \left(x + g\right) |
-3,726 | \dfrac{s^5}{s^4}\cdot 40/5 = \frac{s^5\cdot 40}{5\cdot s^4} |
6,321 | \dfrac{1^{-1}}{1/(\frac{1}{25})} = \dfrac{1}{25} |
-488 | \pi \cdot 3/4 = \pi \cdot \dfrac{19}{4} - 4 \cdot \pi |
9,773 | 0 = (a + b + c)^2 = 1 + 2 \cdot (a \cdot b + b \cdot c + c \cdot a) |
-28,801 | \frac{π\cdot 2}{π\cdot 2\cdot 1/2.5} = 2.5 |
1,011 | \frac{n}{n^2 + 2*n + 1} = \tfrac{1}{n + 2 + \frac{1}{n^2}} \geq \frac{1}{n + 3} |
-1,716 | \dfrac{11}{6} \pi = -\frac{1}{12} \pi + \pi \frac{1}{12} 23 |
14,778 | 3 \cdot \sin{z} - \sin^3{z} \cdot 4 = \sin{3 \cdot z} |
202 | \operatorname{E}\left[\bar{B}\right] = \bar{B} |
13,155 | l - (3 + \left(-1\right))\cdot 3 = 6\cdot \left(-1\right) + l |
20,910 | 237 = 2^6\cdot 3 + 2^4\cdot 3 + 3\cdot (-1) |
-7,845 | \frac{-17 \times i - 1}{-i - 3} \times \frac{i - 3}{-3 + i} = \dfrac{1}{-3 - i} \times (-1 - 17 \times i) |
4,930 | 252 - 144*3^{1 / 2} = (-3^{\frac{1}{2}} + 3)^4 |
7,662 | \frac16 \cdot (k + 1) \cdot 6 \cdot \left(k + 3\right) = (k + 1 + 2) \cdot (k + 1) |
14,254 | \sqrt{2 + x} + 2(-1) = y \implies (2 + y)^2 + 2(-1) = x |
20,246 | \left(2 \cdot (-1) + x^3\right)^2 = 4 + x^6 - 4 \cdot x^3 |
-2,813 | ((-1) + 3) \times \sqrt{10} = 2 \times \sqrt{10} |
-3,399 | 7\cdot 7^{\frac{1}{2}} = ((-1) + 5 + 3)\cdot 7^{1 / 2} |
9,977 | 2\cdot \pi\cdot X/2 = X\cdot \pi |
10,306 | 0 = z\cdot 2 \Rightarrow z = 0 |
-18,371 | \dfrac{r^2 + 7\cdot r}{r^2 + r\cdot 14 + 49} = \frac{r}{(r + 7)\cdot \left(7 + r\right)}\cdot \left(7 + r\right) |
24,927 | 5 \cdot y \cdot y = 247^3 + 273 \cdot \left(-1\right) + 9 \Rightarrow y^2 = 3013797 |
22,522 | Ag = gA |
2,737 | (1 + a) \cdot \left(1 - a\right) = 1 - a^2 |
15,184 | |-y + y \cdot y| = |y| |y + (-1)| |
-20,271 | 4/4 \cdot \frac{1}{-x \cdot 2 + 6} \cdot (6 \cdot (-1) - 7 \cdot x) = \frac{-x \cdot 28 + 24 \cdot \left(-1\right)}{-x \cdot 8 + 24} |
51,713 | 77 = 7\times 11 |
216 | c \cdot c = 1 \neq c |
15,777 | x - \frac{1}{x^2 + 1} \times (4 + x) = \frac{1}{1 + x^2} \times (4 \times (-1) + x^3) |
20,663 | \left(d + a\right)*(a - d) = a^2 - d^2 |
30,857 | \sin{3 \cdot (A + \frac{1}{3} \cdot \pi \cdot 2)} = \sin{A \cdot 3} |
14,495 | 1 + s + s^2 - s^3 + s + s^2 = -s^3 + 1 |
-3,860 | \frac{12\cdot p^3}{p\cdot 42} = 12/42\cdot \frac{p^3}{p} |
2,412 | 396396 = 3^2\cdot 2 \cdot 2\cdot 7\cdot 11^2\cdot 13 |
20,994 | \mathbb{P}\left(y\right) = y^4 - 7*y^3 + 4*y * y + 39*y + 45*(-1) = (y + 5*(-1))*(y + 3*\left(-1\right))*(y * y + y + 3*(-1)) |
-233 | \dfrac{7!}{(7 + 5\times (-1))!\times 5!} = {7 \choose 5} |
347 | 84 = 2*(3 + 4 + 5 + 6 + 7 + 8 + 9) |
-29,372 | (x + 2) \cdot \left(x + 5\right) = x^2 + 5 \cdot x + 2 \cdot x + 10 = x^2 + 7 \cdot x + 10 |
11,413 | \sqrt{3} \cdot 9 + 11 \cdot \sqrt{2} = \left(\sqrt{2} + \sqrt{3}\right)^3 |
23,444 | W^U \cdot E \cdot W = W^U \cdot E \cdot E \cdot W = W^U \cdot E^U \cdot E \cdot W = (E \cdot W)^U \cdot E \cdot W |
33,776 | \cos^2 x=1-\sin^2 x |
10,880 | \left(x + y\right) \left(x + y\right) = (x + y) (x + y) = x^2 + 2 x y + y^2 |
38,797 | -100 = 100\cdot \left(-6\right) + 100\cdot (-1) + 100\cdot 2 + 100\cdot 3 + 100\cdot (-4) + 100\cdot 5 |
9,045 | \cos(3\cdot x) = \cos\left(x\cdot 3\right) |
19,147 | 2\cdot \sin\left(A\right)\cdot \cos(A) = \sin(A\cdot 2) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.