id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-12,252 | 17/18 = \frac{x}{18\cdot π}\cdot 18\cdot π = x |
12,587 | 5 \cdot 0 + 4 \cdot 2 + 3 \cdot 3 + 2 \cdot 7 + 15 = 46 |
-9,321 | -36 \cdot m + 42 = 2 \cdot 3 \cdot 7 - 2 \cdot 2 \cdot 3 \cdot 3 \cdot m |
-233 | \binom{7}{5} = \frac{7!}{(7 + 5\cdot (-1))!\cdot 5!} |
54,186 | 25 = 5 + 10 + 10 |
27,140 | |a - x| + |x - c| = -(a - x) + x - c = -a + 2\cdot x - c |
31,301 | 378 = \frac{756}{2}1 |
-12,127 | 1/2 = \frac{1}{14 \times \pi} \times x \times 14 \times \pi = x |
4,450 | (-1) + 6\cdot k^2 + k = (3\cdot k + (-1))\cdot (2\cdot k + 1) |
190 | \cos{\pi/2} + (\pi/2)^3 \cdot \dfrac{8}{\pi^3} + \pi/2 \cdot 2 = 1 + \pi |
-5,936 | \frac{1}{36*\left(-1\right) + l * l - 5*l}*4 = \frac{1}{(4 + l)*\left(l + 9*(-1)\right)}*4 |
5,656 | 11 \cdot 9 = \left(-1\right) + 10^2 |
26,470 | \sqrt{7 - i*24} = z \Rightarrow z^2 = 7 - i*24 |
16,928 | (a + b)/\left(a b\right) = 1/a + 1/b |
14,727 | z^6 + z^4 + z^3 - z^2 + (-1) = (z^4 + z \cdot z^2 + (-1)) \cdot (z^2 - z + 2) - z^2 \cdot z - z + 1 |
-4,605 | \frac{1}{20\cdot \left(-1\right) + z \cdot z - z}\cdot \left(3\cdot z + 30\right) = \dfrac{5}{5\cdot \left(-1\right) + z} - \tfrac{1}{z + 4}\cdot 2 |
48,850 | 2\times \sqrt{|\varepsilon|} = |\sqrt{\varepsilon} - \sqrt{\varepsilon + x} + \sqrt{\varepsilon} + \sqrt{\varepsilon + x}| \leq |\sqrt{\varepsilon + x} - \sqrt{\varepsilon}| + |\sqrt{\varepsilon + x} + \sqrt{\varepsilon}| |
1,111 | z^4 + 1 = (1 + z^2 - z\cdot \sqrt{2})\cdot (z^2 + z\cdot \sqrt{2} + 1) |
25 | \left(n + (-1)\right)!\times (n + (-1) + 1) = \left(n + (-1)\right)!\times n = n! |
-5,619 | \dfrac{2}{(y + 6 \left(-1\right)) (5 + y)} = \tfrac{2}{30 (-1) + y^2 - y} |
22,641 | x * x * x + p^3 + d^3 - 3*x*p*d = (d + x + p)*(x^2 + p * p + d^2 - p*x - x*d - d*p) |
41,758 | \sin \pi=0 |
-20,682 | \frac{1}{-16\cdot q + 32}\cdot (-q\cdot 2 + 4) = \frac{1}{8}\cdot 1 |
6,491 | 17^2 + 7 \cdot 7 + 5^2 = 4 \cdot 4 + 1^2 + 15^2 + 11^2 |
-11,122 | \left(y + 2\left(-1\right)\right)^2 + b = \left(y + 2\left(-1\right)\right) (y + 2\left(-1\right)) + b = y^2 - 4y + 4 + b |
26,584 | (-1) + u^3 = (1 + u^2 + u)*((-1) + u) |
16,669 | (-b + a) \times (a^2 + a \times b + b^2) = -b^3 + a \times a^2 |
-7,782 | \frac{i\cdot 20 + 10}{4 + i\cdot 2}\cdot \frac{-2\cdot i + 4}{4 - 2\cdot i} = \frac{10 + 20\cdot i}{i\cdot 2 + 4} |
-554 | (e^{\frac{13*\pi*i}{12}})^{13} = e^{\frac{\pi*i}{12}*13*13} |
30,544 | \cos(\sin^{-1}(\xi)) = \sqrt{-\xi^2 + 1} |
1,981 | -h_2^2 + h_1^2 = (-h_2 + h_1) \cdot \left(h_1 + h_2\right) |
-2,436 | \sqrt{16*6} + \sqrt{6} + \sqrt{4*6} = \sqrt{6} + \sqrt{24} + \sqrt{96} |
25,519 | X^4 - 4\cdot X^3 - X^2\cdot 19 - X\cdot 4 + 1 = \left(X^2 + 3\cdot X + 1\right)\cdot \left(1 + X \cdot X - X\cdot 7\right) |
2,930 | y^3 + 8(-1) = (y + 2(-1)) (4 + y^2 + y*2) |
24,093 | \frac{2}{-p^2 + 1} = \frac{1}{-p + 1} + \frac{1}{p + 1} |
-22,306 | (y + 6 \cdot (-1)) \cdot (y + 5 \cdot (-1)) = 30 + y^2 - 11 \cdot y |
19,924 | 0 + (j - i + (-1))*(-D_p^2 + p) + p - D_p^2 = (-D_p^2 + p)*(-i + j) |
25,154 | \frac{1}{2009}\cdot \left(1544 - \frac{1}{2}\right) = \frac{63}{82} |
20,349 | K + e^D = \frac{1}{x \cdot e^{-D}} rightarrow 1/x = \frac{1}{e^D} \cdot \left(e^D + K\right) |
42 | -90 \cdot n \cdot n = -(6 \cdot 20 + 30 \cdot \left(-1\right)) \cdot n \cdot n |
3,783 | 341 = 10^0 + 10 \cdot 10\cdot 3 + 4\cdot 10^1 |
-2,076 | π \cdot \frac{3}{4} + \dfrac13 \cdot π = \frac{1}{12} \cdot 13 \cdot π |
-22,382 | y \cdot y - y\cdot 8 + 20\cdot \left(-1\right) = \left(y + 2\right)\cdot (y + 10\cdot (-1)) |
12,718 | ((-1) + y) (y + 4) = 4(-1) + y^2 + 3y |
34,110 | GG = G^2 |
35,732 | 2^{n + 1} = 2\cdot 2^n = 2^n + 2^n |
34,595 | X^k*C = C*X^k |
-23,451 | 1/5 \cdot 2/3 = \dfrac{2}{15} |
-23,821 | \frac{1}{2 + 8}\cdot 20 = 20/10 = \frac{20}{10} = 2 |
5,743 | \left(\frac43 + 2\right)/6 = \frac59 |
35,502 | z^2 z = z^2 z |
11,474 | v = x^2 \cdot \alpha \Rightarrow x = \sqrt{v/\alpha} |
10,894 | x/f = \frac1d*h \Rightarrow d*x = f*h |
-20,452 | -\frac{70}{56\cdot y + 49\cdot (-1)} = \dfrac77\cdot (-\tfrac{10}{y\cdot 8 + 7\cdot (-1)}) |
17,682 | \left(-b + a\right) \times \left(a + b\right) = -b^2 + a^2 |
30,681 | 2\times 2 \times 3 \times 3 \times 5 =180 |
-20,241 | -\tfrac{1}{6}*\frac{1}{-5*x + 5*\left(-1\right)}*(5*\left(-1\right) - 5*x) = \frac{5 + 5*x}{30*(-1) - 30*x} |
-5,620 | \frac{3}{(b + 6)\cdot (8\cdot \left(-1\right) + b)} = \frac{3}{b^2 - b\cdot 2 + 48\cdot (-1)} |
-30,238 | \frac{1}{z + (-1)}*(z^2 - 2*z + 1) = \frac{1}{z + (-1)}*(z + (-1))^2 = z + \left(-1\right) |
-20,610 | \tfrac{1}{28 - x*20}(x*45 + 63 (-1)) = -9/4 \frac{7 - 5x}{-x*5 + 7} |
-29,669 | \frac{\mathrm{d}}{\mathrm{d}z} (-2\cdot z^5 - z^3\cdot 3 + 1) = -10\cdot z^4 - 9\cdot z^2 |
-16,436 | 10*\sqrt{16*11} = 10*\sqrt{176} |
23,120 | ln(e^x)=xlog_e e=x |
22,916 | 575757 = \frac{39!}{(39 + 5(-1))!*5!} |
-4,564 | \dfrac{1}{2 \cdot (-1) + z^2 - z} \cdot (7 \cdot (-1) - 4 \cdot z) = -\dfrac{1}{2 \cdot (-1) + z} \cdot 5 + \dfrac{1}{1 + z} |
17,762 | j! = j*\left(j + (-1)\right)! = j*\left(j + \left(-1\right)\right)*(j + 2*(-1))! |
-10,299 | 5/5 \left(-\frac{1}{3t + 3(-1)}\right) = -\frac{5}{15 (-1) + t*15} |
-2,309 | -6/17 + \frac{7}{17} = 1/17 |
6,186 | a^{3/2}/(\tfrac{1}{a}) = a^{3/2} a = a^{\frac{5}{2}} |
16,490 | \frac{1}{y}\cdot z = 2\cdot z/(y\cdot 2) |
14,840 | 255253 = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 + 2 \cdot (-1) |
24,257 | \frac{1}{256}\cdot 15 = 15\cdot 1/16/16 |
-10,334 | \dfrac{4}{4}*8/(2q) = 32/(q*8) |
-20,474 | \tfrac18\cdot 1 = \frac{1}{8\cdot q + 48}\cdot \left(6 + q\right) |
1,072 | \frac{(-i*h + g)^{-1}*(-h*i + g)}{g + i*h} = \left(h*i + g\right)^{-1} |
28,851 | \frac{\mathrm{d}}{\mathrm{d}x} \tan^3(x) - 3\tan(x) + x*3 = \tan^4(x)*3 |
9,546 | G\cdot G = G\cdot (0 + G) |
32,058 | 24 > -3\cdot z rightarrow 8 \gt -z |
-13,020 | \frac{9}{21} = \tfrac37 |
12,992 | F^2 + A^2 + A \cdot F + A \cdot F = (A + F)^2 |
-5,774 | \frac{5}{4\cdot (y + 6)} = \frac{5}{4\cdot y + 24} |
30,687 | (3 - 5^{1 / 2})/2 = 3/2 - \frac{1}{2} 5^{\frac{1}{2}} |
18,703 | m*(1 + n) = m + m*n |
8,785 | z\times x\times y = z\times y\times x |
50,792 | 6^4 =1296 |
31,734 | -q_l + q \lt x \implies q_l \gt q - x |
9,231 | 1 + \frac{1}{2}\times (1 - \sqrt{5}) = ((1 - \sqrt{5})/2)^2 |
29,863 | \sin^{-1}(\sin(y)) = \sin^{-1}\left(\sin(π - y)\right) = π - y |
-16,516 | 4 \cdot \sqrt{16} \cdot \sqrt{3} = 4 \cdot 4 \cdot \sqrt{3} = 16 \cdot \sqrt{3} |
-20,858 | -8/9 \cdot (-5/(-5)) = \dfrac{40}{-45} |
9,247 | (\dfrac{1}{3}\cdot 2)^6 = 64/729 |
-25,487 | d/dy \left(-\cos(y) + y^3\right) = 3 \cdot y^2 + \sin(y) |
125 | (\alpha \cdot c \cdot x)^2 = \alpha \cdot \alpha \cdot c^2 \cdot x^2 |
16,142 | \sin(2*w) = -\sin(C)\Longrightarrow 2*w = \sin^{-1}(-\sin\left(C\right)) |
5,180 | 1 + y^4 + y^2 = (1 + y^2 + y) (y^2 - y + 1) |
-20,332 | 2/2 \cdot \frac{1}{-4} \cdot \left(5 \cdot (-1) + y \cdot 5\right) = \frac{1}{-8} \cdot (10 \cdot (-1) + y \cdot 10) |
2,284 | \dfrac{\sin(\pi z/2)}{z} = \frac{\sin(\dfrac{z}{2}\pi)}{\frac{1}{2} \pi z} \frac{\pi}{2} |
29,547 | x \cdot h = h \cdot x \cdot h/h |
24,762 | (1 + \sin(A))\cdot \left(-\sin\left(A\right) + 1\right) = \cos^2(A) |
7,952 | 1 - x_1 + x_2 + x_1 x_2 = (-x_2 + 1) (1 - x_1) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.