id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
7,513 | y/1 = \dfrac{1}{3}*(1 - z) = q \Rightarrow y = q,1 - q*3 = z |
8,103 | 4*z^2 - z * z = 4*z^2 - z * z = (4 + (-1))*z * z = 3*z * z |
-3,070 | \left(2 + 1 + 5\right) \times \sqrt{3} = 8 \times \sqrt{3} |
3,298 | (((\left((((7^2)^2 \cdot 7)^2)^2 \cdot 7\right)^2)^2 \cdot 7)^2)^2 = 7^{340} |
3,903 | 5 (-1) + 64 + 8 (-1) + 7 \left(-1\right) + 7 (-1) + 7 (-1) = 30 |
31,778 | 17*16*15*\dotsm*2 = 17! |
21,429 | 0.064 = (\frac{4}{10}) \times (\frac{4}{10}) \times (\frac{4}{10}) |
-593 | -4 \cdot \pi + 35/6 \cdot \pi = \pi \cdot 11/6 |
-14,214 | \frac{1}{6 + 5 \cdot \left(-1\right)} \cdot 4 = 4/1 = 4/1 = 4 |
20,566 | 165 = \binom{(-1) + 8 + 4}{4 + (-1)} |
13,921 | (2\left(-1\right) + y) (y + 2) + 4 = y^2 |
10,611 | \frac{\mathrm{d}}{\mathrm{d}x} \sin(x \cdot x) = 2 \cdot x \cdot \cos(x^2) |
29,129 | 8\cdot 7=56 |
5,063 | 0 = -c*a*4 + 4*f^2 \Rightarrow c^3 + a^3 + f^3 = a*c*f*3 |
9,038 | \frac{1}{2\cdot \left(-1\right) + x}\cdot (2\cdot x^3 - 10\cdot x + 4) = x^2\cdot 2 + 4\cdot x + 2\cdot (-1) |
19,299 | \left((-1) + 2^l\right)*(1 + 2^l) = 2^{l*2} + (-1) |
26,208 | m/(2*m)! = \frac{m}{2*m*(2*m + (-1))!} = \dfrac{1}{2*(2*m + (-1))!} |
11,861 | \frac{52!}{5! \cdot 47!} = \dfrac{1}{47!} \cdot 52!/5! |
2,402 | \pi*2 = 4\pi*2/13 + 9*2\pi/13 |
-10,616 | -\dfrac{20}{10 \cdot x^3} = -\dfrac{4}{2 \cdot x^3} \cdot \frac15 \cdot 5 |
-20,772 | -8/5 \dfrac{1}{l + 3(-1)}(l + 3(-1)) = \frac{1}{l \cdot 5 + 15 \left(-1\right)}(24 - 8l) |
-5,567 | \dfrac{1}{6 \cdot (-1) + r \cdot 3} = \frac{1}{3 \cdot (r + 2 \cdot (-1))} |
-2,338 | \frac{1}{14} = -\tfrac{1}{14} + \frac{2}{14} |
35,971 | \ldots \cdot \ldots = \ldots^2 |
3,340 | 0 = X \cdot (H_2 + H_1 i) \Rightarrow 0 = H_2 X,XH_1 = 0 |
7,599 | 6 - 10 - h = h + 4(-1) |
42,563 | 1 + 75 + 15 = 91 |
-7,192 | 5/6 \cdot \dfrac23 = \frac{5}{9} |
-17,606 | 75 = 78 + 3 \cdot \left(-1\right) |
-23,225 | \dfrac{1}{5}\cdot 2 = 1 - 3/5 |
1,171 | \dfrac{1}{y^4} + (-1) = -\frac{1}{y^4} \cdot (y^4 + (-1)) |
21,460 | x^4 + 1 = x^4 - 2\times x^2 + 1 - -2\times x^2 = (x^2 + (-1)) \times (x^2 + (-1)) - x \times x = (x^2 + (-1) + x)\times (x^2 + (-1) - x) |
-10,680 | -\frac{25}{5 \cdot m^3} = -\frac{1}{m^3} \cdot 5 \cdot 5/5 |
-20,978 | \frac133 \frac{1}{4 - 7t}\left(5 - t\cdot 4\right) = \frac{1}{12 - 21 t}(15 - t\cdot 12) |
38,287 | 10*\left(1 + 2 + 3 + 4\right) + 5 = 105 |
12,021 | 1 + \sin{y\cdot 2} = q^2 \Rightarrow q^2 + (-1) = \sin{2\cdot y} |
5,599 | x\cdot e\cdot b = x\cdot b = b\cdot x = b\cdot e\cdot x |
42,653 | \sum_{i=1}^n b_i + \sum_{i=1}^n x_i = \sum_{i=1}^n (x_i + b_i) |
-30,897 | 8 \times (-1) + 3 \times c = 8 \times (-1) + c \times 3 |
3,698 | 8*\pi*p = p*2*4*\pi |
-3,896 | \frac1x \cdot x \cdot x = \dfrac{x}{x} \cdot x = x |
-1,948 | -0*π + 3/4*π = 3/4*π |
6,892 | (i + g_1 + g_2) \cdot (i^2 + g_1^2 + g_2^2 - i \cdot g_1 - g_1 \cdot g_2 - i \cdot g_2) = -3 \cdot i \cdot g_2 \cdot g_1 + i^3 + g_1^3 + g_2^3 |
7,959 | -d + 1 - d = -2\cdot d + 1 |
16,211 | (1 + y)^{1 + y} = 1 + (1 + y) \cdot y + ... = 1 + y + y^2 + ... |
22,637 | 1 + \frac{21}{34} = \frac{55}{34} |
-26,511 | \left(6*z\right)^2 = 36*z^2 |
-5,209 | 0.98\cdot 10^1 = 0.98\cdot 10^{5(-1) + 6} |
11,324 | a \cdot d + a = a \cdot \left(d + 1\right) |
-5,081 | 48.0 \cdot 10^{11} = 48.0 \cdot 10^{6 + 5} |
203 | (x^{\tfrac12})^2 = x^{2/2} = x |
877 | \left(1 + y\right)\cdot (y + 5) = y^2 + 6\cdot y + 5 |
6,948 | \sqrt {1+t}=1+t/2+... |
17,943 | \sin{x} = \cos{x} \Rightarrow x = \frac14\pi |
24,791 | (2 \cdot f + 15 \cdot (-1)) \cdot 15 + 225 = 30 \cdot f |
-18,928 | \frac{14}{15} = \frac{1}{9 \cdot \pi} \cdot A_r \cdot 9 \cdot \pi = A_r |
24,533 | 54912 = \tfrac{52*48*44}{2} |
53,258 | \frac{\cos{\theta} - \sin{\theta}}{\cos{\theta} + \sin{\theta}} = \tfrac{1}{\cos{\pi/4}\cdot \cos{\theta} + \sin{\frac{1}{4}\cdot \pi}\cdot \sin{\theta}}\cdot (\sin{\frac{\pi}{4}}\cdot \cos{\theta} - \cos{\pi/4}\cdot \sin{\theta}) = \dfrac{\sin(\dfrac{\pi}{4} - \theta)}{\cos\left(\frac{1}{4}\cdot \pi - \theta\right)} = \tan\left(\pi/4 - \theta\right) |
-27,692 | -7 \sin(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(7 \cos\left(z\right)\right) |
15,631 | g'' + \left(x + (-1)\right) \cdot f = 0 \Rightarrow f = -\frac{1}{1 - x} \cdot g'' |
44,384 | 0.125 = \dfrac{0.25}{2} \cdot 1 |
-23,381 | \frac{1/7*3}{5} = 3/35 |
-7,872 | \dfrac{-18 - 13\cdot i}{-i - 4} = \dfrac{-18 - 13\cdot i}{-i - 4}\cdot \frac{1}{i - 4}\cdot (-4 + i) |
5,054 | \dfrac{1}{l_2\cdot Z_2} = 1/(Z_2\cdot l_2) |
-26,627 | 81*(-1) + 16*y^6 = (4*y * y * y)^2 - 9^2 |
59 | \frac{1}{(n - k + 1)^2} \cdot (n - n - k + 1) = \frac{\left(-1\right) + k}{(1 + n - k) \cdot (1 + n - k)} |
18,406 | 1 + x^2 = 1 + \frac{\mathrm{d}x}{\mathrm{d}t} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 |
14,078 | 21 = a + e + c + h + 5\cdot (-1) + 5 + h = a + e + c + 2\cdot h |
31,993 | \sigma \in E \implies \sigma \in E |
19,817 | \left(-1\right)^{a\cdot b} = (-1)^{a\cdot b} |
16,766 | \sqrt{-x}*\sqrt{-x} = \sqrt{-x*(-x)} = \sqrt{x * x} |
1,376 | 1 = (y^2 + 1)*(g*y^2 + b*y + c) = g*y^4 + b*y^3 + \left(g + c\right)*y^2 + b*y + c |
-7,219 | \frac{3}{9} \cdot \frac{4}{10} = \frac{2}{15} |
-15,816 | -\dfrac{1}{10} \cdot 63 = \frac{9}{10} - 8 \cdot \frac{9}{10} |
-1,868 | 19/12 \cdot \pi - 19/12 \cdot \pi = 0 |
8,848 | k = \left(1 + x_k\right)^k \geq k \cdot x_k |
12,662 | 4^{k + 1} + (-1) = 4\cdot 4^k + (-1) = 4\cdot (4^k + \left(-1\right) + 1) + (-1) = 4\cdot (4^k + (-1)) + 4\cdot 4 + (-1) = 4\cdot \left(4^k + (-1)\right) + 15 |
4,623 | 9 - (5 + 4(-1))^2 = 8 |
-30,541 | \frac{\mathrm{d}y}{\mathrm{d}x} = 2x e^{-y} = \frac{2x}{e^y} |
12,500 | b^{\infty} \cdot b = b^{\infty} |
-1,678 | \pi \cdot \frac76 = 13/12 \cdot \pi + \dfrac{\pi}{12} |
13,485 | b \cdot e \coloneqq b \cdot e |
3,478 | 6\cdot (-1) + z^2 + z = (2\cdot (-1) + z)\cdot (z + 3) |
875 | 2 = C_1/(C_2) = \dfrac{1}{C_2\cdot x}\cdot C_1\cdot \frac{C_2}{C_2}\cdot x = \dfrac{1}{C_2\cdot x}\cdot C_1\cdot |x| |
-3,023 | \sqrt{13}*\left(3 + 2\right) = \sqrt{13}*5 |
10,039 | (1 + k)! = (1 + k)*k! \Rightarrow -k! + \left(1 + k\right)! = k!*k |
4,839 | \vartheta^b \cdot \vartheta^a = \vartheta^{a + b} |
41,815 | 2 + 0 (-1) = 2 |
16,238 | 6132 = {4 \choose 2}\cdot (2\cdot (-1) + 2^{10}) |
19,676 | 4\cdot x + 2\cdot c_1 = 0 \Rightarrow -x\cdot 2 = c_1 |
32,938 | 369 = 258\cdot 492 + 147\cdot (-861) |
13,877 | -\tfrac{1}{1 + x}*(1 + x^2) = \dfrac{x + (-1)}{1 + x} - x |
12,380 | \pi = 2 \cdot x \Rightarrow \frac12 \cdot \pi = x |
6,056 | |z \cdot \omega| = |z - z \cdot \omega + z| |
-7,872 | \frac{-18 - 13 \cdot i}{-4 - i} = \frac{-4 + i}{-4 + i} \cdot \frac{-18 - i \cdot 13}{-4 - i} |
5,015 | 84*9 = 84*10 + 84*(-1) = 840 + 84*\left(-1\right) = 800 + 44*(-1) = 756 |
11,210 | x + A \cdot 2 - A = x + A |
-5,826 | \dfrac{1}{5\cdot (n + 10\cdot \left(-1\right))} = \frac{1}{50\cdot (-1) + n\cdot 5} |
4,444 | ( x, x_1) \cap ( x_2, x_1) = ( x\cdot x_2, x_2\cdot x_1, x\cdot x_1, x_1) = ( x\cdot x_2, x_2\cdot x_1, x_1) |
28,477 | -\cos\left(y\right) = \cos\left(-y + \pi\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.