id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-15,907 | -7\cdot 4/10 + 10\cdot \tfrac{6}{10} = \frac{1}{10}\cdot 32 |
-4,456 | (z + (-1)) \cdot (z + 3) = z^2 + z \cdot 2 + 3 \cdot (-1) |
63 | |B^B| = 1 \gt |B| |
940 | n + n + (-1) + n + 2\cdot (-1) = 3\cdot (-1) + 3\cdot n |
11,747 | \sin^4(z) + \cos^4(z) = (\sin^2(z) + \cos^2\left(z\right)) \cdot (\sin^2(z) + \cos^2\left(z\right)) - 2\sin^2(z) \cos^2\left(z\right) = 1 - \sin^{22}(z)/2 |
27,686 | \left|{D^2}\right| = \left|{D}\right| \times \left|{D}\right| = 0 rightarrow \left|{D}\right| = 0 |
27,367 | (\sqrt{c\cdot b})^2 = (\sqrt{c}\cdot \sqrt{b})^2 |
6,649 | x \cdot x - x\cdot z\cdot 6 + 9\cdot z^2 = 16 \implies 16 = \left(-3\cdot z + x\right) \cdot \left(-3\cdot z + x\right) |
14,161 | 5\cdot \left(-1\right) + x + 11 - x^2\cdot 2 + 3\cdot x = 6 - 2\cdot x^2 + 4\cdot x |
-182 | 8\cdot 7\cdot 6\cdot 5 = \dfrac{8!}{\left(4\cdot (-1) + 8\right)!} |
-5,149 | \frac{48.0}{10^5} = \frac{1}{10^5}\cdot 48 |
-20,874 | \dfrac{1}{t \cdot 5 + 30} \cdot (-t \cdot 6 + 36 \cdot (-1)) = -6/5 \cdot \frac{6 + t}{t + 6} |
921 | 15/51 = \frac{1}{\left(-1\right) + 52}*((-1) + 16) |
24,979 | 70 = 5 + 20 + 10 + 5 + 5\cdot 6 |
24,779 | 1 - \dfrac{1}{F^2}\cdot a = \frac{\partial}{\partial F} \left(F + \dfrac{a}{F}\right) |
-19,496 | 8/3\cdot \frac27 = \frac{\dfrac13\cdot 8}{\dfrac{1}{2}\cdot 7} |
-2,178 | -\frac{2}{15} + \frac{9}{15} = \tfrac{7}{15} |
28,103 | \sin(z) = (e^{i*z} - e^{-i*z})/\left(2*i\right)*\cos(z) = \left(e^{i*z} + e^{-i*z}\right)/2 |
3,205 | \dfrac{1}{\left(1 - V\right) V} = 1/V + \frac{1}{-V + 1} |
38,781 | 0 + 2 \cdot 34 = 68 |
331 | 4*17 * 17 = 24^2 + 2 * 2 + 24^2 |
17,359 | Z^{2*k + 1} = Z^{2*k}*Z = \left(Z^2\right)^k*Z = (\frac16*5)^k*Z |
13,458 | {82 \choose 2} - {3 \choose 1} \cdot {31 \choose 2} = 1926 |
228 | (b \cdot a/a)^n = \dfrac{b^n}{a} \cdot a |
-27,624 | -4 + 5\cdot \left(-1\right) + 4 + 5\cdot (-1) = -4 + 4 + 5\cdot (-1) + 5\cdot (-1) = 0 + 10\cdot (-1) = -10 |
19,386 | z = x\cdot 3 + 1\Longrightarrow x = \frac13\cdot \left((-1) + z\right) |
7,525 | \sin((-x)^2) = \sin\left(x^2\right) |
20,421 | z^3 - y^3 = (z - y)\cdot (z \cdot z + y\cdot z + y^2) |
7,560 | \sin(\frac{4}{3} \cdot π) = \sin(-\tfrac{1}{3} \cdot π) |
-5,234 | 10^4*0.98 = 0.98*10^{(-5) (-1) - 1} |
-9,772 | -0.45 = -\frac{1}{10}4.5 = -9/20 |
14,456 | 7 \cdot 7 + 1^2 = 2\cdot 5^2 |
-464 | 13/12 \pi = -\pi*6 + \dfrac{1}{12}85 \pi |
25,521 | (x + 9\cdot (-1))\cdot \left(x + 9\right) = x^2 + 81\cdot (-1) |
29,621 | 3 = \tfrac{1}{2}\cdot (3\cdot (-1) + 9) |
26,467 | 77 = 23 \cdot \left(-1\right) + 10^2 |
26,481 | x^2 - x\cdot 8 + 16 = (x + 4\cdot (-1)) \cdot (x + 4\cdot (-1)) |
8,690 | 0 = -11*\frac{1}{5}*(-b_2 + b_1*2) + b_3 - b_1*7 \implies 0 = b_3*5 - 57*b_1 + 11*b_2 |
-16,820 | {3} = ({3} \times 5t) + ({3} \times -7) = (15t) + (-21) = 15t - 21 |
-15,458 | \dfrac{{x^{6}r^{-10}}}{{x^{10}r^{-20}}} = \dfrac{{x^{6}}}{{x^{10}}} \cdot \dfrac{{r^{-10}}}{{r^{-20}}} = x^{{6} - {10}} \cdot r^{{-10} - {(-20)}} = x^{-4}r^{10} |
3,316 | a*b = a^1*b^1 |
16,273 | \frac{1}{c^2} \cdot (1 - c \cdot 2) = y \cdot 2 + y^2 \Rightarrow \sqrt{-2 \cdot c + 1}/c = \sqrt{y^2 + y \cdot 2} |
29,612 | (4 + 4 + 4)\cdot c = 6\cdot 2 \implies c = 1 |
4,085 | \frac{1}{u*x} = \frac{1}{x*u} |
-20,378 | \frac{1}{j\cdot \left(-6\right)}\cdot (-j\cdot 5 + 2\cdot (-1))\cdot 6/6 = \dfrac{1}{j\cdot (-36)}\cdot \left(12\cdot (-1) - j\cdot 30\right) |
31,804 | g \cdot f \cdot h = (h + i) \cdot 10^2 + f \cdot 10 + g - i = h \cdot 10^2 + f \cdot 10 + g + i \cdot 10^2 - i = h \cdot 10^2 + f \cdot 10 + g + 99 \cdot i |
22,430 | -f + g = -f + g |
12,146 | \dfrac{75}{100} \cdot (1 - \dfrac{1}{100} \cdot 90) = \frac{1}{100} \cdot 75 \cdot 10/100 = 3/40 |
7,601 | \sec(v - w) = \frac{1}{\cos(v - w)} = \frac{1}{\cos(v) \cdot \cos(w) + \sin(v) \cdot \sin(w)} |
49,075 | (2 - 2^{1/2})^{1/2}*(2 + 2^{1/2})^{1/2} = (2^2 + 2*(-1))^{1/2} = 2^{1/2} |
8,424 | x\cdot x^{l + k} = x^{k + l + 1} |
19,224 | 2 \cdot z^2 - z \cdot 4 = 2 \cdot (-1) + 2 \cdot ((-1) + z)^2 |
24,261 | a + c \coloneqq c + a |
13,717 | z^h - z^c = 1 - z^c - 1 - z^h |
-18,558 | 5*r + 5 = 3*\left(2*r + 7*\left(-1\right)\right) = 6*r + 21*(-1) |
6,206 | 3 = -1/(\left(-1\right) \frac13) |
-1,200 | ((-1)\cdot 6\cdot 1/5)/(\dfrac17 (-4)) = -\frac{7}{4} (-6/5) |
43,556 | 2\times 3 = 3\times 2 |
14,987 | \left(-1 = 1 rightarrow 1 \cdot 1 = (-1) \cdot (-1)\right) rightarrow 1 = 1 |
-16,351 | (4*11)^{\frac{1}{2}}*3 = 3*44^{\frac{1}{2}} |
1,146 | 0 = -x + 1 \implies 1 = x |
30,493 | z_2 = \frac{\partial}{\partial t} z_1 = \frac{\partial}{\partial z_2} z_1 \cdot \frac{\partial}{\partial t} z_2 |
16,062 | 10^{2*t*0.05} = 10^{t*0.1} |
4,421 | (-1) + q^3 = (q^2 + q + 1) \cdot ((-1) + q) |
-6,976 | 198 = 3*11*6 |
362 | 1 + 3 + 5 + 7\cdot \cdots\cdot k = k^2 |
-17,080 | 5 = 5 \times 3 \times n + 5 \times (-3) = 15 \times n - 15 = 15 \times n + 15 \times (-1) |
35,051 | 2^2 \cdot 2/32 = 2^{3 + 5 \cdot (-1)} = 1/4 |
18,674 | A^\complement \cap F^\complement = A^\complement - F |
14,581 | \tfrac25\cdot 4/7 = \tfrac{8}{35} |
9,664 | \frac{1}{9(-1) + y^2}(-y*3 + y^2) = 1 - \frac{y*3 + 9(-1)}{9\left(-1\right) + y^2} |
3,182 | 3 + 2(3k + \left(-1\right) + 2k^2 - k) = 4k^2 + 4k + 1 = (2k + 1)^2 |
1,310 | \dfrac{1}{x + (-1)}*(x^2 + (-1)) = \frac{1}{x + (-1)}*(x + 1)*(x + (-1)) = x + 1 |
6,966 | C - F\cdot C\cdot F = C\cdot F^2 - F\cdot C\cdot F = (C, F) |
-26,169 | 13 - 0.75*12 + \frac{1}{2}8 = 13 + 9(-1) + 4 = 8 |
-3,924 | \frac{r^4}{r^5}*\tfrac{6}{22} = \frac{6*r^4}{22*r^5}*1 |
5,532 | \int \sin\left(z\cdot 2\right)\,dz = \int 1\cdot 2\cos(z) \sin\left(z\right)\,dz |
21,050 | 1/\left(X*X'\right) = \frac{1}{X'*X} |
26,837 | \frac{1}{3 + y}*\left(3 - y\right) = \frac{1}{6}*(3 - y)*\dfrac{3 - y}{y + 3} + (3 - y)/6 |
36,908 | C - 0.6667\cdot C = (1 - 0.6667)\cdot C = 0.3333\cdot C |
172 | (S + 2 (-1)) \left(1 + S\right) = S^2 - S + 2 (-1) |
3,139 | (y^{20} + y^{21} + y^{22} + \dotsm + y^{50})^3 = (y^{20})^3 \times (1 + y + y^2 + \dotsm + y^{30})^3 |
20,357 | \dfrac{1}{\left(-1\right) + 3}(3^{k + 1} + (-1)) = 2 \cdot 3^k \implies 0 = -3^k + (-1) |
26,115 | (z + 2(-1)) \left(z + 3(-1)\right) = z^2 - z \cdot 5 + 6 |
2,898 | (e^y + 1)^{1/y} = (e^y)^{\dfrac1y} (1 + e^{-y})^{1/y} = e*(1 + e^{-y})^{\frac1y} |
19,393 | (-\frac{1}{2} + 5) \cdot (-\dfrac{1}{5} + 3) \cdot (-\tfrac13 + 2) = 21 |
31,349 | x^2 + 3 \cdot x + 10 \cdot (-1) = \left(x + 2 \cdot (-1)\right)^2 + 7 \cdot x + 14 \cdot (-1) = (x + 2 \cdot (-1))^2 + 7 \cdot x + 14 \cdot (-1) = (x + 2 \cdot (-1))^2 + 7 \cdot \left(x + 2 \cdot (-1)\right) |
-7,393 | \tfrac{6}{7}\cdot 4/9 = 8/21 |
4,418 | 22500 - 450 z + z^2 \cdot 4.25 = (-1.5 z + 150) \cdot (-1.5 z + 150) + z^2 \cdot 2 |
-20,659 | -\frac45 \cdot \tfrac{6 \cdot k}{6 \cdot k} = \frac{(-24) \cdot k}{30 \cdot k} |
14,132 | a \cdot \eta \cdot T_l = T_l \cdot \eta \cdot a |
16,031 | \dfrac{1}{2}\cdot ((-1) + 7) = 3 |
-6,437 | \frac{4}{y^2 + y*5 + 50*\left(-1\right)} = \tfrac{4}{\left(y + 5*(-1)\right)*\left(y + 10\right)} |
-2,473 | \sqrt{25} \times \sqrt{3} - \sqrt{3} \times \sqrt{16} = 5 \times \sqrt{3} - \sqrt{3} \times 4 |
6,043 | (-a' + h)\cdot (3 + h + a') = -(a'^2 + 3\cdot a' + 1) + h^2 + h\cdot 3 + 1 |
2,465 | h^x = 1 + \ln(h) x + \tfrac{\ln(h)^2 x^2}{2}1 + \frac{1}{6}x^3 \ln(h)^3 \ldots |
-3,764 | \frac{11 d^2}{9} = \tfrac{11}{9} d^2 |
38,503 | 4\times\dfrac{3!}{2!} = 12 |
29,553 | x!^2 (1 + x) = (1 + x)! x! |
-9,973 | 0.01*(-4) = -4/100 = -0.04 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.