id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
28,922 | G \times G = \left(-G\right) \times \left(-G\right) |
6,071 | -(n + (-1)) + 2*n + 2*(-1) = n + (-1) |
15,938 | \cos{2 \cdot \theta} = -2 \cdot \sin^2{\theta} + 1 |
24,807 | (1 + y y + y) \left(y + (-1)\right) = (-1) + y^3 |
-1,138 | \frac{1}{6 \cdot 1/5} \cdot ((-8) \cdot \dfrac{1}{7}) = 5/6 \cdot (-\frac{8}{7}) |
15,832 | g^3 + (-1) = \left(g^2 + g + 1\right)*((-1) + g) |
10,489 | |g_x + 0\cdot (-1)| = |g_x| |
27,624 | (-(x - z)^2 + (z + x)^2)/4 = xz |
10,591 | \dfrac{1}{g\cdot 2^{1 / 2} + a} = \tfrac{1}{a^2 - g^2\cdot 2}\cdot a + \dfrac{\left(-1\right)\cdot g}{a^2 - g \cdot g\cdot 2}\cdot 2^{1 / 2} |
14,212 | \lim_{y \to \infty} y*2 = \lim_{y \to \infty} y |
54,206 | 3\cdot 11 = 33 = 4\cdot 8 + 1 |
23,705 | \left(3*(-1) + z\right)^2 = 9 + z^2 - z*6 |
6,614 | \frac{1}{\sin(A \cdot 2)} \cdot (\cos(A \cdot 2) + 1) = \cot(A) |
-6,019 | \tfrac{z}{(z + 8*(-1))*(7 + z)} = \frac{1}{56*(-1) + z * z - z}*z |
16,169 | (5 - \frac92)^2 = (-9/2 + 4)^2 |
18,197 | x^6 - x^4 \cdot 3 + x^2 \cdot 3 + (-1) = ((-1) + x^2) \cdot \left(x^2 + (-1)\right)^2 |
-20,246 | \frac{8}{8 + 6p}p*5/5 = \dfrac{40 p}{p*30 + 40} |
-1,169 | 7/1 \cdot \frac56 = \frac16 \cdot 5/\left(1/7\right) |
5,710 | \frac{1}{1 + m^2 + m} = \dfrac{1}{(m + 1)^2 - 1 + m + 1} |
-22,383 | 2(-1) + 6 = 4 |
21,497 | d + g \cdot y = 0\Longrightarrow y = \frac1g \cdot (d \cdot (-1)) |
47,111 | \binom{12 + 2}{12} = \binom{14}{12} |
-20,860 | 4/1\cdot \dfrac{y + 9}{9 + y} = \frac{1}{9 + y}\cdot (36 + y\cdot 4) |
31,052 | (1 + z^2) \cdot (1 - z^2 + z^4) = 1 + z^6 |
-1,832 | 7/12 \cdot \pi = \frac{3}{4} \cdot \pi - \pi/6 |
43,795 | \overline{x} + \overline{n} = \overline{n + x} |
13,202 | \frac{1}{-2} \cdot ((-1) \cdot y) = \frac{(-1) \cdot (-y)}{(-1) \cdot (-2)} = \frac12 \cdot y |
19,153 | 5957\cdot 11 + 9 = 65536 |
26,394 | \operatorname{atan}(x) = \tfrac{1}{x \cdot x + 1} |
29,362 | n + 3 = \frac{1}{3 \cdot \left(-1\right) + n} \cdot (n^2 + 9 \cdot \left(-1\right)) |
16,182 | \sin(1 + n) = \sin{1}\cdot \cos{n} + \cos{1}\cdot \sin{n} |
3,657 | 3\cdot l + \epsilon\cdot 3 = 4\cdot l\Longrightarrow l = 3\cdot \epsilon |
6,050 | \lambda\cdot x = \lambda\cdot x\cdot \frac{Z}{Z} = \lambda\cdot x\cdot Z/Z |
30,770 | 24 = \frac{24}{2}2 |
-7,543 | \frac{1}{-1 - 5*i}*(i*9 + 7) = \dfrac{7 + 9*i}{-5*i - 1}*\frac{i*5 - 1}{-1 + 5*i} |
13,936 | {n - k + k + (-1) \choose \left(-1\right) + k} = {n + (-1) \choose k + (-1)} |
13,117 | (1 + 7)\cdot (2 + 1)\cdot (1 + 1) = 48 |
40,249 | \binom{8}{3}*2*(\binom{5}{4} + \binom{5}{3}) = 1680 |
-3,040 | -\sqrt{11} + \sqrt{275} = -\sqrt{11} + \sqrt{25 \cdot 11} |
7,342 | \tfrac{1}{(-1) + x}*((-1) + x^2) = \frac{1}{x + (-1)}*(x + (-1))*(1 + x) |
8,424 | \alpha^{l + k} \cdot \alpha = \alpha^{1 + l + k} |
25,853 | 720 + 24 \cdot (-1) + 24 \cdot (-1) + 24 \cdot \left(-1\right) + 24 \cdot (-1) + 6 + 6 + 6 + 2 \cdot (-1) + 2 \cdot (-1) + 1 = 639 |
-11,080 | (x + 4 \cdot \left(-1\right)) \cdot (x + 4 \cdot \left(-1\right)) + b = \left(x + 4 \cdot (-1)\right) \cdot (x + 4 \cdot (-1)) + b = x \cdot x - 8 \cdot x + 16 + b |
18,870 | \frac{\mathrm{d}}{\mathrm{d}z} e^{((-1) \times z^2)/2} = -z \times e^{\frac12 \times \left((-1) \times z^2\right)} |
21,049 | \frac{1}{1 + y} = \tfrac{1}{(1 + y)^{\dfrac12} (1 + y)^{1/2}} |
-15,832 | \dfrac{8}{10}\cdot 6 - 2/10\cdot 9 = 30/10 |
-18,555 | 5\cdot y + 9\cdot (-1) = 2\cdot \left(4\cdot y + 3\cdot (-1)\right) = 8\cdot y + 6\cdot (-1) |
-27,710 | \frac{d}{dp} (-\cos(p)*12) = 12*\sin\left(p\right) |
19,134 | 20 (-1) + (120 + 20 (-1))\cdot 3 = 280 |
-25,813 | \frac{3}{10*6} = \frac{1}{60}3 |
25,082 | S \times \tau \times q^2 = \tau \times S \times q^2 |
-1,715 | 4/3\cdot \pi + 5/6\cdot \pi = \tfrac{13}{6}\cdot \pi |
20,666 | \frac{\mathrm{d}}{\mathrm{d}x} 1/x = -\dfrac{1}{x^2} = -\dfrac{1}{x^2} |
-22,215 | x^2 + 7\cdot x + 8\cdot (-1) = \left(x + 8\right)\cdot ((-1) + x) |
1,844 | 6 = (7^{1/2} + (-1)) (7^{1/2} + 1) |
-19,615 | \frac{1}{6} \cdot 40 = 8 \cdot 5/(6) |
-7,379 | \frac19*4 = \frac19*4 |
2,205 | \dfrac{12}{6} \cdot 4 = 8 |
21,744 | (-1) + 2*\sin\left(y\right) = 0 \implies \sin(y) = 1/2 |
10,623 | (1/2 - i)^2 + i\cdot 2 = (\dfrac{1}{2} + i)^2 |
11,412 | 3 + 3\cdot 5 + ... + 3\cdot 5^m = \frac{1}{4}\cdot (-3 + 5^{m + 1}\cdot 3) |
7,217 | p = L + z\Longrightarrow -L + p = z |
14,831 | -3 - 3 = 2 \times (-3) |
18,522 | (z^2)^2 = z^2 \times z^2 = z \times z \times z \times z = z^4 = z^{2 \times 2} |
1,353 | \left(e^{i*x} - e^{-i*x}\right)/(2*i) = \sin{x} \Rightarrow -e^{-x*i} + e^{i*x} = 2*i*\sin{x} |
22,910 | (-1) + y^3 - y \cdot y + y = ((-1) + y) \cdot (1 + y^2) |
28,846 | (\omega \cdot \omega)^4 = (\omega^4)^2 = (\omega + 1) \cdot (\omega + 1) = \omega^2 + 1 |
-2,028 | \frac14 \cdot \pi = -5/12 \cdot \pi + \frac{2}{3} \cdot \pi |
3,127 | \sqrt{(x + 1)^2 + (-1)} = \sqrt{x^2 + 2 \cdot x} |
440 | c_1^2 - 2 \cdot c_2 \cdot c_1 + c_2^2 = (c_1 - c_2)^2 |
31,583 | b/c := b/c |
26,102 | d_k + d_{(-1) + k} + \cdots + d_2 + d_1 = d_1 + d_2 + \cdots + d_{k + (-1)} + d_k |
27,053 | \frac{1}{2048}\cdot (165 + 55 + 11 + 1) = \frac{29}{256} |
-15,830 | -39/10 = -5 \cdot \frac{9}{10} + \frac{6}{10} |
25,816 | 9\cdot 2 + 3\left(-3\right) + 4 = 13 |
-7,793 | \dfrac{1}{-4}\cdot (-20 + 20\cdot i) = -20/(-4) + \frac{20\cdot i}{-4} |
14,651 | \frac{x^{k + 1}}{k \cdot x^k} \cdot (k + 1) = (k + 1) \cdot x/k = (1 + 1/k) \cdot x |
-18,763 | 0.0198 = (-1) \cdot 0.003 + 0.0228 |
26,770 | N*M = M*N |
32,825 | \frac{1}{4\cdot 4} = \frac{1}{4\cdot 4} = \frac{1}{4\cdot 4} |
19,132 | x + 3\cdot (-1) \geq 0 rightarrow x \geq 3 |
-20,121 | (10\cdot r + 30\cdot (-1))/(r\cdot 90) = 10/10\cdot (3\cdot \left(-1\right) + r)/(r\cdot 9) |
8,772 | (a^2 b^2)^{1/2} = (a^2)^{1/2} (b^2)^{1/2} = |a| |b| = -a b |
3,906 | \frac{\frac{1}{s^2 + a^2} \cdot s}{s^2 + a \cdot a} \cdot 1 = \frac{s}{(a^2 + s^2)^2} |
29,548 | 2^{1092} + (-1) = \left(1 + 2^{273}\right)*(2^{546} + 1)*\left(2^{273} + (-1)\right) |
-3,951 | \dfrac{44a^5}{55a^5} = \dfrac{44}{55} \cdot \dfrac{a^5}{a^5} |
-12,008 | 1/9 = \dfrac{p}{12 \cdot \pi} \cdot 12 \cdot \pi = p |
29,306 | 3 = 5*\frac{3}{5} |
-2,970 | (5 + 4 + 2(-1)) \sqrt{11} = 7\sqrt{11} |
26,098 | 4\cdot \pi - 3\cdot \pi = \pi |
47,627 | 1 < 3/2 |
11,783 | -(a^2 - a\times x + x^2) + \left(a + x\right)^2 = 3\times a\times x |
14,492 | a_2 + a_3 + ... + a_k + a_{k + 1} = a_2 + a_3 + ... + a_k + a_{1 + k} |
995 | a/f + \frac1af = (a^2 + f * f)/\left(af\right) |
29,596 | z \cdot z \cdot z \cdot 3 + z \cdot 6 = ((-1) + z)^3 + z^3 + (1 + z)^3 |
35,070 | \left\{0\right\} = ( l, x)^s = ( sl, sx) |
-20,904 | \frac{90*(-1) + 9*n}{-n*63 + 9} = \frac19*9*\frac{10*(-1) + n}{1 - 7*n} |
35,186 | x + k*x^2 + k^2*x^3 + \dots = \frac{1}{k}*\left(k*x + (k*x)^2 + \left(k*x\right)^3 + \dots\right) = \frac{1}{1 - k*x} |
7,491 | y^0 = \frac{\frac{1}{y}*y^2*y^3}{y^4} |
21,614 | 25 w^2 - 10 w + 1 = ((-1) + 5 w) ((-1) + 5 w) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.