id
int64
-30,985
55.9k
text
stringlengths
5
437k
8,084
\sin(π/2 + y) = \cos(y)
-15,234
\dfrac{1}{\frac{b^2}{z^5} \cdot \frac{1}{z^8}} = \frac{1}{b \cdot b \cdot \frac{1}{z^5}} \cdot z^8
-20,468
-\frac{5}{2}*\frac{-k*5 + 2}{2 - 5*k} = \dfrac{25*k + 10*\left(-1\right)}{-k*10 + 4}
18,303
-1 = 4! - 5*3! + 2!*5 - 5*1! + 1 + \left(-1\right)
42,513
3 \cdot 3 - 1^1 \cdot 8 = 1
19,101
\frac83 1 = 8/3
29,558
G\cdot z = z\cdot G
22,576
72 = 2^3\times 3 \times 3
30,368
-1 = (t + (-1))\cdot (1 + t + t^2 + \ldots) = t + \left(-1\right) + \left(t + (-1)\right)\cdot t + (t + (-1))\cdot t \cdot t + \ldots
-4,491
\frac{1}{3 + x} - \frac{3}{1 + x} = \frac{-x \cdot 2 + 8 \cdot (-1)}{x^2 + 4 \cdot x + 3}
16,849
\int \frac{y^4}{1 + y^2}\,\text{d}y = \int \frac{1}{y^2 + 1}\cdot (y^4 + \left(-1\right) + 1)\,\text{d}y
-2,262
3/11 = -\frac{2}{11} + 5/11
-5,859
\frac{4}{(7\cdot (-1) + q)\cdot (2 + q)} = \tfrac{4}{14\cdot (-1) + q^2 - 5\cdot q}
-483
(e^{\frac{19}{12}\cdot i\cdot \pi})^3 = e^{3\cdot 19\cdot i\cdot \pi/12}
-6,218
\frac{1}{12 + z^2 - z \cdot 8} = \dfrac{1}{\left(z + 2 \cdot (-1)\right) \cdot (z + 6 \cdot (-1))}
-6,135
\frac{1}{(10 + t)*(7*(-1) + t)}*3 = \frac{3}{t^2 + 3*t + 70*(-1)}
27,584
\dfrac14 + \tfrac{1}{5} = 9/20
5,321
16\cdot g^2 = x^2 + x^2 - g\cdot x\cdot 2 + g^2 \Rightarrow 0 = x^2\cdot 2 - g\cdot x\cdot 2 - 15\cdot g^2
4,962
\dfrac{a^2}{a}\cdot 1 = a
21,300
\left(a + (-1)\right) \cdot (1 + a) = \left(-1\right) + a^2
8,467
-\pi/8 = -\frac{\pi}{8} + \pi*0
37,209
0.999 \dotsm = \frac{9 / 10}{1 - 1/10}1 = 1
45,535
5\times 17 = 85
6,378
1/2 + \tfrac{1}{3} + \frac17 + 1/84 = \frac{1}{84} \cdot 83
26,814
2017 - (2027 + 2011 \cdot \left(-1\right))^{1/2} = 2013
29,229
x*0 + 0*x = 0*x + x*0 + x*0
-26,247
4 = C \times e^{\left(-5\right) \times 0} = C
18,811
s = \frac1x*x^3 \Rightarrow x * x = s
13,245
1/2 = \sin\left(\frac{1}{6}\times \pi\right)
12,483
\dfrac{1}{8} \cdot 5/2 = 5/16
17,956
e^{l\cdot z} - \binom{l}{1} = ((-1) + e^z)^l
2,051
r*(a*b - b*a) = a*b*r - r*b*a
-26,621
2 \cdot x^2 + 50 \cdot (-1) = 2 \cdot (x \cdot x + 25 \cdot \left(-1\right)) = 2 \cdot (x + 5) \cdot \left(x + 5 \cdot (-1)\right)
30,994
b^{301}\cdot a^{301} = (b\cdot a)^{301}
17,552
{n \choose q} = {n + (-1) \choose q + (-1)} + {(-1) + n \choose q}
22,407
2^{\frac{1}{2}} = \tfrac{1}{2^{\dfrac{1}{2}}}\cdot 2
11,148
\frac{x^2}{x + 1} = \frac{1}{x + 1} - -x + 1
-7,028
\frac{1}{13} \cdot 3 \cdot 2/12 = \frac{1}{26}
17,303
\dfrac{1}{m} + 1 = (m + 1)/m
7,590
0 = y\cdot x = z\cdot x^{m + 1} \Rightarrow 0 = z\cdot x^m = y
6,682
z^2 + z \times 4 + 5 \times (-1) = 0\Longrightarrow \left((-1) + z\right) \times (z + 5) = 0
22,945
E_k\cdot x_k = E_k\cdot x_k
-7,706
\frac{1}{5 - i} \cdot (-5 - 25 \cdot i) = \tfrac{1}{i + 5} \cdot (5 + i) \cdot \frac{1}{5 - i} \cdot (-i \cdot 25 - 5)
-10,634
\frac{6 + t \cdot 12}{120 + t \cdot 90} = \dfrac{t \cdot 2 + 1}{20 + t \cdot 15} \cdot 6/6
7,255
x^4 + x^2 + 1 = (1 + x^2 + x) (1 + x^2 - x)
22,791
F^{m + l} = F^m F^l
-2,886
7\cdot \sqrt{2} = (4 + 2\cdot (-1) + 5)\cdot \sqrt{2}
14,661
\sin^2{t} = x \implies \cos{2*t} = 1 - 2*\sin^2{t} = 1 - 2*x
9,027
2^{n \cdot 2} = \frac{2^{-n^2}}{2^{-n \cdot 2 - n^2}}
12,530
a \times b = \frac{1}{a \times b} = \frac{1}{b \times a} = b \times a
10,773
7/100 + \dfrac{171}{200} = 185/200 = 0.925
-3,985
16/32\cdot \frac{n^3}{n^5} = \frac{16\cdot n^3}{32\cdot n^5}
804
(1 + M*2 - x*2)/2 \delta = \delta*(M - x) + \frac{\delta}{2}
9,508
\frac{1}{\frac{2}{k^3}\cdot k} = k^2/2
-22,926
72/54 = 4\cdot 18/(18\cdot 3)
-2,453
(5 + 4(-1)) \sqrt{10} = \sqrt{10}
10,778
1 = 7 - 167 - 7*23 = 7*24 + 167 (-1)
8,228
-x^2 \cdot \cos(\pi - \phi) \cdot 2 + x \cdot x = x \cdot x \cdot \cos^2\left(\phi\right) + x \cdot x \cdot \sin^2(\phi) + \cos(\phi) \cdot x^2 \cdot 2
-20,395
\tfrac{45 k + 9}{81 (-1) + 9 k} = 9/9 \dfrac{1 + k*5}{k + 9 (-1)}
-5,113
\dfrac{1}{1000}\cdot 36 = \frac{1}{1000}\cdot 36
23,263
1/12 = \frac{1}{3\cdot 4}
13,279
27/216 = \dfrac36\cdot \frac16\cdot 3\cdot 3/6
9,773
0 = (a + g + f) * (a + g + f) = 1 + 2\left(ag + gf + fa\right)
-233
\frac{1}{(5\cdot \left(-1\right) + 7)!\cdot 5!}\cdot 7! = {7 \choose 5}
20,802
\dfrac{15}{34} = \dfrac{9 + 6}{20 + 14}
4,247
\left(l + 1 - s\right)*\binom{l}{s + (-1)} = s*\binom{l}{s}
-17,078
6 = 6*(-t) + 6*\left(-4\right) = -6*t - 24 = -6*t + 24*(-1)
-5,618
\frac{2}{2*(h + 8*(-1))} = \frac{2}{h*2 + 16*(-1)}
7,366
\mathbb{E}\left[Y'\cdot x\right] = \sqrt{\mathbb{E}\left[Y'^2\right]\cdot \mathbb{E}\left[x^2\right]}
7,493
x = t*0 + (1 - t)*(1 + x) = (1 - t)*(1 + x)
-19,044
5/8 = F_s/(4\pi)*4\pi = F_s
39,116
1/(x*y) = \dfrac{1}{x*y}
36,555
0 + \frac{1}{3} + 1/2 = \frac56
4,913
q = r^{a\cdot m}\cdot q^{b\cdot m} = (r^a\cdot q^b)^m
28,099
63 = 3\cdot (4 + 4 + 4 + 4 + 4) + 3
33,391
(x^{1250} + x^{625} \cdot 10 + 50) \left(50 + x^{1250} - x^{625} \cdot 10\right) = x^{2500} + 2500
-12,854
11 + 7 + 6 = 24
23,070
9^l + 4^{l + 1} = (5 + 4)^l + 4^{l + 1} = 5 \times h + 4^l + 4^{l + 1} = 5 \times h + 5 \times 4^l
29,894
(2 \pi r) (2r)=4\pi r^2
15,572
\left(x + 3 \times (-1)\right) \times (x + 2 \times (-1)) = x^2 - 5 \times x + 6
-22,715
\tfrac{30}{18} = 6\cdot 5/(3\cdot 6)
-26,628
(m \cdot 3 + n \cdot 5)^2 = 9 \cdot m^2 + m \cdot n \cdot 30 + 25 \cdot n^2
32,240
\frac{\mathrm{d}w}{\mathrm{d}x} = \frac{1}{1 - w}\cdot w - w = \dfrac{w^2}{1 - w}
23,475
(l + 1) \cdot (4 + l) \cdot (l + 3) \cdot (l + 2)/4 = \dfrac{1}{4} \cdot (l + 3) \cdot (1 + l) \cdot \left(2 + l\right) \cdot (l + 4)
12,875
X^0 = \frac{1}{X}*X
7,919
-x\cdot (-x)\cdot 6 + x^2\cdot 10 = 16 \implies x^2 = 1
26,550
\frac{1}{1 + \sqrt{x}} = \frac{\left(-1\right) + \sqrt{x}}{x + (-1)}
5,561
a_n = \dfrac{1}{n\cdot 2}\cdot (n\cdot 2 + (-1)) \implies a_n = 1 - \frac{1}{2\cdot n}
2,290
s + (2 - s)/2 = \frac22\cdot s + \frac12\cdot (2 - s) = \frac{1}{2}\cdot (s + 2)
21,473
\frac{1}{z + (-1)}*z = \tfrac{z + (-1) + 1}{z + (-1)}
23,352
\frac{\partial}{\partial y} y^{\alpha} = y^{\alpha + (-1)}\cdot \alpha
8,546
(n + 1)^2 = n \cdot n + 2 \cdot n + 1 = (n + (-1))^2 + 2 \cdot n + (-1) + 2 \cdot n + 1 = \left(n + (-1)\right)^2 + 4 \cdot n
21,666
\left((x + f)^{1/2} = x \Rightarrow -f + x^2 - x = 0\right) \Rightarrow x = \left((f*4 + 1)^{1/2} + 1\right)/2
21,247
x^{( n, l)} = x^{\alpha\cdot n + \beta\cdot l} = x^{\alpha\cdot n}\cdot x^{\beta\cdot l}
25,921
3 \times (l + x) + l \times x = 0 \Rightarrow (x + 3) \times (3 + l) = 9,x,l \leq 0
28,977
\pi \gt 2 \cdot 2^{1/2} = 2.828 \cdot \dots \gt 2.82
-26,573
16 - 49 \times y \times y = 4 \times 4 - (y \times 7)^2
19,209
-(p^2 - p*r*2 + r^2*2) + p^2 + p*r*2 + 2*r^2 = 4*p*r
15,165
\frac{1}{A - B} = \frac{1}{\left(-B/A + 1\right) \cdot A}
22,122
\left(4 + y^2 - x^2 - 4*y = 0 \Rightarrow (2*(-1) + y)^2 - x * x = 0\right) \Rightarrow 0 = (-x + y + 2*\left(-1\right))*(x + y + 2*(-1))