id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-16,844 | 8 = 8\cdot 5s + 8(-1) = 40 s - 8 = 40 s + 8(-1) |
35,619 | 1/12321 + 12319/24642 = \frac{1}{2} |
-5,537 | \frac{4}{n \cdot n + 2 \cdot n + 35 \cdot (-1)} = \frac{4}{(7 + n) \cdot (5 \cdot (-1) + n)} |
2,900 | \frac{dy}{dt}/ \frac{dx}{dt} = \frac{dy}{dx} = \frac{2x+y}{y} |
32,887 | 151657\cdot 27099 = \left(58^2 - 41 \cdot 41\right) z = 99\cdot 17 z |
9,914 | d \cdot 6^{1/2} + a + 2^{1/2} \cdot b + 3^{1/2} \cdot c = 0\Longrightarrow a = b = c = d = 0 |
27,353 | (hn)^x := \frac{h}{x}xn := xn/x xh/x |
-1,784 | \frac{1}{4} \times 3 \times \pi = \pi \times \dfrac{1}{12} \times 13 - \dfrac{\pi}{3} |
22,479 | (10 + n)^2 + 89*(-1) = n^2 + n*20 + 11 |
18,126 | z + 1/z = 1 \implies z^7 + \frac{1}{z^7} = 1 |
14,436 | (\gamma^{1/2})^2 = \gamma |
28,417 | 0 = 3 \cdot (l - d)^2 + x \Rightarrow -3 \cdot (-d + l) \cdot (-d + l) = x |
9,249 | \cos(f + \pi\cdot 2) = \cos{f} |
11,679 | 1/2\cdot a\cdot 4\cdot a\cdot 4 = a^2\cdot 8 |
-8,460 | 4/\left(-4\right) = -1 |
-11,040 | \tfrac{1}{8}176 = 22 |
38,276 | 1.6 = 2\times 0.8 |
23,698 | \frac{1}{6^3}\cdot {6 \choose 3} = 20/216 = 5/54 |
7,670 | x + 2 \cdot (-1) - i + 1 = -(i + (-1)) + x + 2 \cdot (-1) |
-24,261 | \frac{126}{9 + 5} = \tfrac{126}{14} = \frac{126}{14} = 9 |
9,729 | c^2 = cc^1 |
-617 | e^{18 \cdot \pi \cdot i/12} = (e^{\pi \cdot i/12})^{18} |
13,450 | -a - b*i = -(a + b*i) |
20,339 | 2 \cdot m + (-1) = -(\left(-1\right) + m)^2 + m^2 |
4,275 | x^4 + (-1) = (x^2 + (-1)) \cdot (x^2 + 1) = \left(x + (-1)\right) \cdot (x + 1) \cdot (x^2 + 1) |
40,575 | -8 \cdot 7 + 3 \cdot 19 = 1 |
-11,349 | (x + 6 \cdot \left(-1\right))^2 + b = (x + 6 \cdot (-1)) \cdot (x + 6 \cdot (-1)) + b = x^2 - 12 \cdot x + 36 + b |
-26,595 | 81 - 4*x * x = -(x*2)^2 + 9^2 |
17,923 | \frac{1}{n + 1} + \frac{1}{(n + 1) \cdot (n + 2)} = \dots = \dfrac{1}{n + 1 + 1} |
5,905 | x\cdot z + z\cdot y = z\cdot (x + y) |
29,188 | \beta + 1 + \alpha \coloneqq \alpha + \beta + 1 |
-25,185 | \cot(π) = \frac{\cos(π)}{\sin(π)} = -\dfrac10 |
646 | (\left(-1\right) + i) \cdot C + \dots = C \cdot i |
-10,671 | \frac15\cdot 5\cdot (-\frac{7 + y\cdot 4}{y\cdot 5 + 1}) = -\frac{35 + 20\cdot y}{25\cdot y + 5} |
13,465 | \left(0 = 1 + q\cdot 2 \Rightarrow 2\cdot q = -1\right) \Rightarrow -1/2 = q |
21,944 | \left(-1\right) + 2^{66} = \left(2^{33} + \left(-1\right)\right)*(2^{33} + 1) |
21,357 | \cos(\cos{\theta}) = \cos(\cos\left(\theta + \pi\right)) |
283 | \frac{1}{(2 + k)*\left(k + 1\right)} + \frac{k}{1 + k} = \frac{1}{2 + k}*\left(k + 1\right) |
35,763 | 1 - \sin(2y)/2 = 1 - \sin(y) \cos(y) = \sin^2(y) + \cos^2(y) - \sin(y) \cos(y) |
6,803 | \frac{1}{1 - \frac{1}{z + 1}} = (1 + z)/z |
31,528 | 2^{12} = 64^2 = ...\cdot 6 |
22,660 | \frac{1}{4.1} = 0.2439 \cdot ... |
30,790 | n = \left\{1, 3, n, 2, \ldots\right\} |
26,972 | x^2 + 2*x*y + y^2 = \left(x + y\right)^2 |
6,773 | \cos(6\cdot y) = \cos(y + y\cdot 5) |
23,405 | 0 = Z Z \Rightarrow 0 = Z |
6,369 | \frac{\partial}{\partial x} (y^3 + x^3) = x^2\times 3 + 3\times y^2\times \frac{dy}{dx} |
11,465 | 2\cdot (f^2 + b \cdot b) = (f - b)^2 + \left(f + b\right)^2 |
3,852 | 1 + 5x^4 + x^3*10 + x * x*10 + 5x = -x^5 + (x + 1)^5 |
-9,285 | -2*2*2 q + 2*2*2*5 = -8q + 40 |
33,497 | 150 = 2\cdot (1! + 7\cdot 2! + 3!\cdot 6 + 4!) |
22,498 | y \cdot 0 = \left(y + 0\right) \cdot (0 + 0) = y \cdot 0 + y \cdot 0 \Rightarrow y \cdot 0 = 0 |
12,331 | \frac{24+3+3}{6^3}=\frac{30}{6^3} |
31,240 | \tau \alpha^l = \alpha^l \tau |
-3,964 | \frac{12\cdot n \cdot n}{21\cdot n^3}\cdot 1 = 12/21\cdot \frac{n^2}{n^3} |
55,714 | e^w = \frac{1}{-z + 1} \cdot (z + 1) rightarrow z = \frac{1}{e^w + 1} \cdot (e^w + (-1)) = \sinh{w/2} |
-2,876 | \sqrt{13} \cdot \left(4 + 2 \cdot \left(-1\right)\right) = 2 \cdot \sqrt{13} |
-10,685 | \frac55*\frac{6}{x^3} = \frac{30}{x^3*5} |
-1,464 | \dfrac41 \cdot \left(-\dfrac13\right) = ((-1) \cdot 1/3)/(1/4) |
-11,596 | 0 + 5\cdot (-1) + 4\cdot i = -5 + 4\cdot i |
28,344 | -49/5 = -\dfrac{49}{5} |
-7,408 | \frac16 = \dfrac{4}{9} \cdot \frac{3}{8} |
20,581 | d + b = -1\Longrightarrow -b + d = -16 |
-1,795 | 7/12\cdot \pi + \pi/2 = \pi\cdot 13/12 |
6,118 | 5 + x^4 - x^3 \cdot 5 + 10 \cdot x^2 - 10 \cdot x = \frac{1}{x} \cdot (-(1 - x)^5 + 1) |
-9,314 | 45 - a \cdot 15 = -a \cdot 3 \cdot 5 + 3 \cdot 3 \cdot 5 |
11,530 | x + k + e = k + e + x |
36,920 | 16 + 0(-1) + 3(-1) = 13 |
40,394 | \frac{1}{128}35 = \frac{1}{128}35 |
16,168 | 3/4\cdot x = 3\cdot x/4 |
-23,805 | \dfrac{6}{1 + 2} = \frac{1}{3}6 = 6/3 = 2 |
18,152 | 0 < 120 - 3 k \Rightarrow k < 40 |
23,575 | 768 = (2 + 2)\cdot 6\cdot 2^5 |
29,108 | \left|{A Z}\right| = \left|{A}\right| \left|{Z}\right| = \left|{Z}\right| \left|{A}\right| = \left|{Z A}\right| |
-5,162 | 0.33\cdot 10^7 = 0.33\cdot 10^{3\cdot (-1) + 10} |
7,315 | \frac{10 \pi}{18} = 5\pi/9 |
24,411 | 1 = \tfrac{(-1)^0}{2^0\cdot 0!} |
-7,947 | a^2 - d^2 = (-d + a)\cdot (a + d) |
-18,950 | 1/12 = A_s/(36\times \pi)\times 36\times \pi = A_s |
2,446 | 4/8 \frac{5}{10}*5/9 = \tfrac{5}{36} |
-23,522 | ((-1)\cdot 0.88 + 1)^6 = 0.12^6 |
7,527 | \dfrac38\cdot \pi = \frac38\cdot \pi + \pi\cdot 0 |
2,739 | 1 = (\frac35)^2 + \left(4/5\right)^2 |
34,831 | \frac{1}{a + 2 + z + 2\cdot (-1)} = \dfrac{1}{(1 + \frac{z + 2\cdot (-1)}{2 + a})\cdot (2 + a)} |
30,270 | 2^{10} + 1 = (2^8 - 2^6 + 2^4 - 2^2 + 1) (2^2 + 1) |
16,844 | x \times 2 = d/dx x \times x |
30,832 | 1/(z*y) = \frac{1}{y*z} |
22,810 | a^2 - h^2 = \left(a + h\right)*\left(a - h\right) |
40,642 | 1 + 3\lambda = h \implies h * h = 9\lambda^2 + 6\lambda + 1 = 3*(3\lambda^2 + 2\lambda) + 1 |
23,601 | -\frac{1}{2(z + (-1))} = \frac{1}{\left(1 - z\right)\cdot 2} |
5,993 | x - x_0 = \left(\sqrt{x_0} + \sqrt{x}\right) \cdot (\sqrt{x} - \sqrt{x_0}) |
-29,427 | \frac{36}{5} = \frac{1}{5}36 |
15,585 | (4/10)^4 = (\tfrac152)^4 = 16/625 |
10,417 | (\mu + z) \left(z + y'\right) (\mu + y) = (y' + z) (y + \mu) |
11,601 | (l + (-1))! \cdot \left(l + 1\right)! = (l + 1)/l \cdot l!^2 \gt l!^2 |
-19,514 | \frac{1}{2 \cdot 1/8} = 1^{-1} \cdot 8/2 |
22,702 | 7 = 2 * 2 + 2 + 1 * 1 |
-20,218 | \frac{(-1) - s*5}{8(-1) + 5s} \frac{7}{7} = \frac{-35 s + 7(-1)}{35 s + 56 \left(-1\right)} |
26,493 | \cos{\pi \cdot k} = \sin(\pi/2 + k \cdot \pi) |
5,282 | s^2 - 2\times s + 1 = ((-1) + s) \times ((-1) + s) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.