id
int64
-30,985
55.9k
text
stringlengths
5
437k
-16,844
8 = 8\cdot 5s + 8(-1) = 40 s - 8 = 40 s + 8(-1)
35,619
1/12321 + 12319/24642 = \frac{1}{2}
-5,537
\frac{4}{n \cdot n + 2 \cdot n + 35 \cdot (-1)} = \frac{4}{(7 + n) \cdot (5 \cdot (-1) + n)}
2,900
\frac{dy}{dt}/ \frac{dx}{dt} = \frac{dy}{dx} = \frac{2x+y}{y}
32,887
151657\cdot 27099 = \left(58^2 - 41 \cdot 41\right) z = 99\cdot 17 z
9,914
d \cdot 6^{1/2} + a + 2^{1/2} \cdot b + 3^{1/2} \cdot c = 0\Longrightarrow a = b = c = d = 0
27,353
(hn)^x := \frac{h}{x}xn := xn/x xh/x
-1,784
\frac{1}{4} \times 3 \times \pi = \pi \times \dfrac{1}{12} \times 13 - \dfrac{\pi}{3}
22,479
(10 + n)^2 + 89*(-1) = n^2 + n*20 + 11
18,126
z + 1/z = 1 \implies z^7 + \frac{1}{z^7} = 1
14,436
(\gamma^{1/2})^2 = \gamma
28,417
0 = 3 \cdot (l - d)^2 + x \Rightarrow -3 \cdot (-d + l) \cdot (-d + l) = x
9,249
\cos(f + \pi\cdot 2) = \cos{f}
11,679
1/2\cdot a\cdot 4\cdot a\cdot 4 = a^2\cdot 8
-8,460
4/\left(-4\right) = -1
-11,040
\tfrac{1}{8}176 = 22
38,276
1.6 = 2\times 0.8
23,698
\frac{1}{6^3}\cdot {6 \choose 3} = 20/216 = 5/54
7,670
x + 2 \cdot (-1) - i + 1 = -(i + (-1)) + x + 2 \cdot (-1)
-24,261
\frac{126}{9 + 5} = \tfrac{126}{14} = \frac{126}{14} = 9
9,729
c^2 = cc^1
-617
e^{18 \cdot \pi \cdot i/12} = (e^{\pi \cdot i/12})^{18}
13,450
-a - b*i = -(a + b*i)
20,339
2 \cdot m + (-1) = -(\left(-1\right) + m)^2 + m^2
4,275
x^4 + (-1) = (x^2 + (-1)) \cdot (x^2 + 1) = \left(x + (-1)\right) \cdot (x + 1) \cdot (x^2 + 1)
40,575
-8 \cdot 7 + 3 \cdot 19 = 1
-11,349
(x + 6 \cdot \left(-1\right))^2 + b = (x + 6 \cdot (-1)) \cdot (x + 6 \cdot (-1)) + b = x^2 - 12 \cdot x + 36 + b
-26,595
81 - 4*x * x = -(x*2)^2 + 9^2
17,923
\frac{1}{n + 1} + \frac{1}{(n + 1) \cdot (n + 2)} = \dots = \dfrac{1}{n + 1 + 1}
5,905
x\cdot z + z\cdot y = z\cdot (x + y)
29,188
\beta + 1 + \alpha \coloneqq \alpha + \beta + 1
-25,185
\cot(π) = \frac{\cos(π)}{\sin(π)} = -\dfrac10
646
(\left(-1\right) + i) \cdot C + \dots = C \cdot i
-10,671
\frac15\cdot 5\cdot (-\frac{7 + y\cdot 4}{y\cdot 5 + 1}) = -\frac{35 + 20\cdot y}{25\cdot y + 5}
13,465
\left(0 = 1 + q\cdot 2 \Rightarrow 2\cdot q = -1\right) \Rightarrow -1/2 = q
21,944
\left(-1\right) + 2^{66} = \left(2^{33} + \left(-1\right)\right)*(2^{33} + 1)
21,357
\cos(\cos{\theta}) = \cos(\cos\left(\theta + \pi\right))
283
\frac{1}{(2 + k)*\left(k + 1\right)} + \frac{k}{1 + k} = \frac{1}{2 + k}*\left(k + 1\right)
35,763
1 - \sin(2y)/2 = 1 - \sin(y) \cos(y) = \sin^2(y) + \cos^2(y) - \sin(y) \cos(y)
6,803
\frac{1}{1 - \frac{1}{z + 1}} = (1 + z)/z
31,528
2^{12} = 64^2 = ...\cdot 6
22,660
\frac{1}{4.1} = 0.2439 \cdot ...
30,790
n = \left\{1, 3, n, 2, \ldots\right\}
26,972
x^2 + 2*x*y + y^2 = \left(x + y\right)^2
6,773
\cos(6\cdot y) = \cos(y + y\cdot 5)
23,405
0 = Z Z \Rightarrow 0 = Z
6,369
\frac{\partial}{\partial x} (y^3 + x^3) = x^2\times 3 + 3\times y^2\times \frac{dy}{dx}
11,465
2\cdot (f^2 + b \cdot b) = (f - b)^2 + \left(f + b\right)^2
3,852
1 + 5x^4 + x^3*10 + x * x*10 + 5x = -x^5 + (x + 1)^5
-9,285
-2*2*2 q + 2*2*2*5 = -8q + 40
33,497
150 = 2\cdot (1! + 7\cdot 2! + 3!\cdot 6 + 4!)
22,498
y \cdot 0 = \left(y + 0\right) \cdot (0 + 0) = y \cdot 0 + y \cdot 0 \Rightarrow y \cdot 0 = 0
12,331
\frac{24+3+3}{6^3}=\frac{30}{6^3}
31,240
\tau \alpha^l = \alpha^l \tau
-3,964
\frac{12\cdot n \cdot n}{21\cdot n^3}\cdot 1 = 12/21\cdot \frac{n^2}{n^3}
55,714
e^w = \frac{1}{-z + 1} \cdot (z + 1) rightarrow z = \frac{1}{e^w + 1} \cdot (e^w + (-1)) = \sinh{w/2}
-2,876
\sqrt{13} \cdot \left(4 + 2 \cdot \left(-1\right)\right) = 2 \cdot \sqrt{13}
-10,685
\frac55*\frac{6}{x^3} = \frac{30}{x^3*5}
-1,464
\dfrac41 \cdot \left(-\dfrac13\right) = ((-1) \cdot 1/3)/(1/4)
-11,596
0 + 5\cdot (-1) + 4\cdot i = -5 + 4\cdot i
28,344
-49/5 = -\dfrac{49}{5}
-7,408
\frac16 = \dfrac{4}{9} \cdot \frac{3}{8}
20,581
d + b = -1\Longrightarrow -b + d = -16
-1,795
7/12\cdot \pi + \pi/2 = \pi\cdot 13/12
6,118
5 + x^4 - x^3 \cdot 5 + 10 \cdot x^2 - 10 \cdot x = \frac{1}{x} \cdot (-(1 - x)^5 + 1)
-9,314
45 - a \cdot 15 = -a \cdot 3 \cdot 5 + 3 \cdot 3 \cdot 5
11,530
x + k + e = k + e + x
36,920
16 + 0(-1) + 3(-1) = 13
40,394
\frac{1}{128}35 = \frac{1}{128}35
16,168
3/4\cdot x = 3\cdot x/4
-23,805
\dfrac{6}{1 + 2} = \frac{1}{3}6 = 6/3 = 2
18,152
0 < 120 - 3 k \Rightarrow k < 40
23,575
768 = (2 + 2)\cdot 6\cdot 2^5
29,108
\left|{A Z}\right| = \left|{A}\right| \left|{Z}\right| = \left|{Z}\right| \left|{A}\right| = \left|{Z A}\right|
-5,162
0.33\cdot 10^7 = 0.33\cdot 10^{3\cdot (-1) + 10}
7,315
\frac{10 \pi}{18} = 5\pi/9
24,411
1 = \tfrac{(-1)^0}{2^0\cdot 0!}
-7,947
a^2 - d^2 = (-d + a)\cdot (a + d)
-18,950
1/12 = A_s/(36\times \pi)\times 36\times \pi = A_s
2,446
4/8 \frac{5}{10}*5/9 = \tfrac{5}{36}
-23,522
((-1)\cdot 0.88 + 1)^6 = 0.12^6
7,527
\dfrac38\cdot \pi = \frac38\cdot \pi + \pi\cdot 0
2,739
1 = (\frac35)^2 + \left(4/5\right)^2
34,831
\frac{1}{a + 2 + z + 2\cdot (-1)} = \dfrac{1}{(1 + \frac{z + 2\cdot (-1)}{2 + a})\cdot (2 + a)}
30,270
2^{10} + 1 = (2^8 - 2^6 + 2^4 - 2^2 + 1) (2^2 + 1)
16,844
x \times 2 = d/dx x \times x
30,832
1/(z*y) = \frac{1}{y*z}
22,810
a^2 - h^2 = \left(a + h\right)*\left(a - h\right)
40,642
1 + 3\lambda = h \implies h * h = 9\lambda^2 + 6\lambda + 1 = 3*(3\lambda^2 + 2\lambda) + 1
23,601
-\frac{1}{2(z + (-1))} = \frac{1}{\left(1 - z\right)\cdot 2}
5,993
x - x_0 = \left(\sqrt{x_0} + \sqrt{x}\right) \cdot (\sqrt{x} - \sqrt{x_0})
-29,427
\frac{36}{5} = \frac{1}{5}36
15,585
(4/10)^4 = (\tfrac152)^4 = 16/625
10,417
(\mu + z) \left(z + y'\right) (\mu + y) = (y' + z) (y + \mu)
11,601
(l + (-1))! \cdot \left(l + 1\right)! = (l + 1)/l \cdot l!^2 \gt l!^2
-19,514
\frac{1}{2 \cdot 1/8} = 1^{-1} \cdot 8/2
22,702
7 = 2 * 2 + 2 + 1 * 1
-20,218
\frac{(-1) - s*5}{8(-1) + 5s} \frac{7}{7} = \frac{-35 s + 7(-1)}{35 s + 56 \left(-1\right)}
26,493
\cos{\pi \cdot k} = \sin(\pi/2 + k \cdot \pi)
5,282
s^2 - 2\times s + 1 = ((-1) + s) \times ((-1) + s)