id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,493 | \frac{9\cdot z + 21\cdot (-1)}{z^2 - z\cdot 5 + 4} = \frac{1}{(-1) + z}\cdot 4 + \frac{1}{z + 4\cdot (-1)}\cdot 5 |
-3,347 | 6^{1/2} \times 9^{1/2} + 6^{1/2} \times 25^{1/2} = 3 \times 6^{1/2} + 5 \times 6^{1/2} |
-3,648 | \frac{120 k^4}{k^3*144} = 120/144 \frac{k^4}{k^2 * k} |
34,347 | \binom{y + x}{2} = (x^2 + 2xy + y \cdot y - x - y)/2 |
40,200 | e! = e! \cdot 2 = e! |
4,067 | 3 - z*2 = y^2 + z^2 \Rightarrow 4 = (z + 1)^2 + y^2 |
-16,815 | -6 = 9\cdot m^2 - 9\cdot m - 6\cdot 3\cdot m - -18 = 9\cdot m \cdot m - 9\cdot m - 18\cdot m + 18 |
-6,310 | \frac{1}{10 \cdot (-1) + n} \cdot (n + 10 \cdot (-1)) \cdot \frac{1}{n + 1} \cdot 3 = \dfrac{(n + 10 \cdot \left(-1\right)) \cdot 3}{(n + 1) \cdot \left(n + 10 \cdot (-1)\right)} |
31,137 | 91/216 = -\dfrac{1}{216}125 + 1 |
-20,464 | \frac{(-10) \cdot s}{60 \cdot s} = -\dfrac{1}{6} \cdot \frac{10}{10 \cdot s} \cdot s |
16,512 | y + 4\cdot (-1) + 4 = y |
-4,613 | \tfrac{1}{4 + x} - \frac{1}{5 + x}*3 = \frac{7*(-1) - 2*x}{20 + x^2 + x*9} |
15,293 | x * x + 9 = 0 \Rightarrow x = 3i,-i*3 |
13,910 | \frac{16}{3} = \frac{1}{12}16 + \frac{16}{4} |
-6,058 | \frac{1}{g \cdot 4 + 40 \cdot (-1)} \cdot 2 = \dfrac{2}{4 \cdot (10 \cdot (-1) + g)} |
4,542 | \frac{y}{x} = \frac{0 (-1) + y}{x + 0 (-1)} |
19,331 | \sqrt{\frac{3}{4}^2 + \frac{3}{4}^2} = \sqrt{\frac{18}{16}} > 1 |
35,693 | \frac{1}{2 \cdot U^4 - 5 \cdot U \cdot U + 3} = \dfrac{1}{\left(2 \cdot U^2 + 3 \cdot (-1)\right) \cdot (U^2 + (-1))} = \frac{1}{(\sqrt{2} \cdot U - \sqrt{3}) \cdot \left(\sqrt{2} \cdot U + \sqrt{3}\right) \cdot (U + (-1)) \cdot (U + 1)} |
26,158 | 2\cdot (-w + k) + 0 = 0 \implies k = w |
29,493 | \tfrac{x}{\sqrt{-x^2 + 1}} = \tan{\theta} \implies \arctan{\dfrac{1}{\sqrt{-x^2 + 1}}x} = \theta |
17,848 | -(10 - x_l) + 15 = 5 + x_l |
-29,148 | 3\cdot 3 + (-1) = 8 |
3,199 | x*\gamma*z = x*z = z = x*\gamma*z |
-20,175 | \dfrac{p*42 + 14*(-1)}{8 - 24*p} = \dfrac{-p*6 + 2}{2 - p*6}*(-\frac14*7) |
10,481 | 1 + r \cdot r \cdot 3 + 3 \cdot r = -r^3 + (1 + r)^3 |
19,397 | (a + x) \cdot (-a + x) = x^2 - a \cdot a |
-12,494 | -\frac{1}{-6.5} \cdot 58.5 = 9 |
18,564 | -\frac{1}{7} + 1 - 2/7 = \frac47 |
23,259 | 5^2 + 5 \cdot 25 + 25 \cdot 25 = 25 \cdot (1^2 + 5 + 5 \cdot 5) = 25 \cdot 31 |
-675 | \left(e^{19 i\pi/12}\right)^{15} = e^{15 \frac{19}{12}\pi i} |
-8,085 | \frac{2 - 8 \cdot i}{3 + 5 \cdot i} = \frac{-8 \cdot i + 2}{3 + 5 \cdot i} \cdot \frac{-i \cdot 5 + 3}{3 - 5 \cdot i} |
27,176 | \binom{x}{j} = \frac{x!}{j! \times (x - j)!} = \binom{x}{x - j} |
-10,557 | \dfrac{1}{y*75}*\left(30*(-1) + y*5\right) = \frac55*\frac{1}{15*y}*(6*\left(-1\right) + y) |
-13,440 | \frac{40}{3 + 1} = \dfrac{40}{4} = \frac14 \cdot 40 = 10 |
21,958 | 1/(x*b) = 1/(b*x) |
21,776 | (u + x) I = uI + xI |
-6,679 | 8/100 + \frac{1}{10}*9 = \frac{1}{100}*90 + \dfrac{1}{100}*8 |
6,362 | \dfrac{1}{l + (-1)} - 1/l = \dfrac{1}{l \cdot ((-1) + l)} |
19,543 | e^{Q_2 + Q_1} = e^{Q_1}\cdot e^{Q_2} |
-4,553 | \frac{4}{4 \cdot (-1) + y} + \frac{1}{y + 2 \cdot (-1)} \cdot 3 = \dfrac{1}{y \cdot y - y \cdot 6 + 8} \cdot (20 \cdot (-1) + y \cdot 7) |
15,014 | z_{m + 1} - z_m = \frac{z^2 - z^2}{z_{m + 1} + z_m} = \frac{z_m + (-1)}{z_{m + 1} + z_m} |
16,915 | \cos((-y + \pi)/2) = \sin(y/2) |
8,385 | (\frac{1}{2}*3)^3/3 = 9/8 |
28,103 | \sin{z} = \frac{1}{2 \cdot i} \cdot (e^{i \cdot z} - e^{-i \cdot z}) \cdot \cos{z} = (e^{i \cdot z} + e^{-i \cdot z})/2 |
15,152 | e^{\pi/2} = 4.8104 \cdot \dots \approx 110^{\frac{1}{3}} = 4.791 |
10,565 | (-1) + x^4 = \left((-1) + x\right) \times \left(1 + x\right) \times (x^2 + 1) |
48,009 | \sqrt{5 \cdot 5} = 5 = |5| |
24,236 | B \setminus Z + x = B \cap Z + x^c = B \cap Z^c + x |
19,155 | 1/(\frac{1}{a}) = \dfrac{1}{1/a} = a |
-4,555 | (z + 3)\cdot (5\cdot (-1) + z) = 15\cdot (-1) + z^2 - z\cdot 2 |
-1,163 | 5/4 (-5/1) = 1/4 \cdot 5/(1/5 (-1)) |
160 | \frac{18!}{3!*5!*10!} = 2450448 |
-2,142 | \pi\cdot \frac{5}{3} = 7/6\cdot \pi + \pi/2 |
-4,026 | \dfrac{1}{3} \times y^2 = y^2/3 |
9,680 | \frac{48^2}{17^2}\cdot (34^2 - y^2) = (95 - y)^2 = 95^2 - 190\cdot y + y^2 |
20,995 | -\sin{-y} \cdot (-1) = \sin{-y} = -\sin{y} |
-4,303 | g\cdot \frac32 = \frac{3}{2}\cdot g |
-2,089 | \pi\cdot \dfrac{17}{12} + 4/3\cdot \pi = \pi\cdot 11/4 |
17,120 | \tfrac{1}{X^2 + X \cdot f + f^2} = \dfrac{X - f}{(X - f) \cdot (X^2 + X \cdot f + f \cdot f)} = \frac{X - f}{X^3 - f^3} |
-17,976 | 43 = 20 + 23 |
4,180 | l = x\cdot a \implies l/a = x |
1,335 | \frac{1}{y^M} = y^{-M} |
28,005 | \lim_{m \to \infty} z_m = a \Rightarrow \lim_{m \to \infty} |z_m| = |a| |
1,246 | \sin(-z)/\left((-1)*z\right) = \sin\left(z\right)/z |
8,053 | \tan\left(\arctan\left(x\right)\right) = x |
36,138 | 30^2 - 24^2 = 900 + 576 (-1) = 324 = 4 \cdot 81 |
14,916 | (s^k + (-1))! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot \dots \cdot \left(s^k + (-1)\right) |
-23,111 | -7/2 = -\frac{1}{4} \cdot 7 \cdot 2 |
8,256 | \frac{1}{(-1) + 2}(4(-1) + 30) = 26 |
-29,370 | (7 + z) \cdot (7 - z) = 7^2 - z \cdot z = 49 - z^2 |
16,930 | 2*(1 + \frac{1}{17}) = \frac{35}{17} < 32/15 |
4,347 | 4 \cdot z = 4 \cdot z + 1 = z + z + \frac14 + z + \frac24 + z + 3/4 |
27,068 | (-1) + G^{12} = (1 + G^6) (G^6 + \left(-1\right)) |
2,076 | l_2^2 - l_1^2 = (-l_1 + l_2) \cdot (l_1 + l_2) |
16,138 | \frac{x^2}{x^2 \cdot x} = \frac1x |
1,887 | x = -2 \cdot x \cdot 7 + 5 \cdot x \cdot 3 |
-27,654 | 3/2 + 5/2 + 2\cdot \left(-1\right) = 4 + 2\cdot \left(-1\right) = 2 |
3,190 | \left(1 + 3^4\right)*(3^2 + 1)*(\left(-1\right) + 3^2) = (-1) + 3^{2^3} |
-20,892 | \frac{5}{5}\cdot \left(-\dfrac65\right) = -30/25 |
-1,642 | \frac{7}{4}\pi - \frac{3}{2}\pi = \frac{1}{4}\pi |
-26,249 | 2 = De^{\left(-3\right)*0} = D |
-20,582 | 4/4\cdot \frac{(-1) + q}{10\cdot (-1) - q} = \dfrac{q\cdot 4 + 4\cdot (-1)}{-4\cdot q + 40\cdot (-1)} |
21,775 | \left(x + (-1)\right)! \times (x + 1)! = \frac{x + 1}{x + (-1)} \times x! \times x! > x! \times x! |
26,847 | 0 = b_y + b_z*c_y \Rightarrow -\frac{1}{b_z}*b_y = c_y |
-12,020 | 3/5 = \dfrac{s}{6\cdot π}\cdot 6\cdot π = s |
-5,306 | 24.0 \cdot 10^1 = 10^{-1 + 2} \cdot 24 |
-7,381 | \frac{1}{91} \cdot 10 = 5/14 \cdot \frac{4}{13} |
2,703 | \left(5*(-1) + x \geq 0\Longrightarrow x + 5*(-1) = 1\right)\Longrightarrow x = 6 |
-19,503 | 9/8 \cdot 5/9 = \frac{1/9 \cdot 5}{1/9 \cdot 8} |
10,951 | t - s + 1 = -\binom{s}{2} + \binom{t + 1}{2} + \binom{s + (-1)}{2} - \binom{t}{2} |
-10,383 | -\dfrac{40}{a^2 \cdot 40} = -\frac{8}{8 \cdot a^2} \cdot 5/5 |
11,108 | 3^x\cdot 3^5 = 3^{5 + x} |
-16,463 | 4 \cdot (9 \cdot 13)^{1 / 2} = 4 \cdot 117^{\frac{1}{2}} |
6,822 | 2\cdot n = n\cdot 3 - n |
-6,775 | 12 \cdot 3 \cdot 12 = 432 |
-20,729 | -\frac57*\frac{10*z + 9}{z*10 + 9} = \frac{1}{z*70 + 63}*(45*(-1) - z*50) |
47,602 | 2^z + 2^z = 2*2^z = 2^{z + 1} |
9,772 | y_l - x_l = 0\Longrightarrow y_l = x_l |
11,918 | (S^{1/2}\cdot T^{\frac12})^2 = S\cdot T |
19,853 | \dfrac{j^2}{j!} = \frac{j}{\left(j + \left(-1\right)\right)!} = \dfrac{1}{\left(j + 2 \cdot (-1)\right)!} + \frac{1}{(j + \left(-1\right))!} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.