id
int64
-30,985
55.9k
text
stringlengths
5
437k
23,572
s \cdot (a + f) = s \cdot a + s \cdot f
18,771
\frac{1}{m}*\binom{\left(-1\right) + m + x}{x} = \binom{(-1) + m + x}{m}/x
-9,082
38.1/100 = 38.1\%
33,014
x^{7 + l} = x^7 x^l = x^l
30,275
f + b + d = b + d + f
14,262
23 \cdot \left(-1\right) + 2^6 = 41
-3,965
\frac{n\cdot 35}{14 n^4} = \dfrac{35}{14} \frac{1}{n^4}n
35,584
24 = 0 + \left\lfloor{\frac15\cdot 100}\right\rfloor + \left\lfloor{\frac{100}{25}}\right\rfloor
26,899
\cos(2x) = 1 - \sin^2(x)\cdot 2 \implies \sqrt{(-\cos(2x) + 1)/2} = \sin(x)
36,012
2 = -(-2) - 0
19,835
3^{2 + n} = 9\cdot 3^n
26,972
(x + z)^2 = z^2 + x * x + 2*z*x
4,390
(l + (-1))!\cdot \left((-1) + l\right) = l! - ((-1) + l)!
45,554
\xi^{m + 1} = \xi^{m_j} - d*w*(\xi^{m_j} - \xi^{m_{j + (-1)}})/x = (1 - \frac{1}{x}*d*w)*\xi^{m_j} + d*w/x*\xi^{m_{j + \left(-1\right)}}
-1,409
7/2\cdot \dfrac72 = 7\cdot 1/2/(2\cdot 1/7)
5,612
0 \lt 3/4\cdot (2 - \dfrac34) = 0.9375 \lt 1
13,895
\left(C_2 + C_1\right)^2 = C_1 \cdot C_1 + 2\cdot C_1\cdot C_2 + C_2^2
-2,040
-\frac{19}{12} \cdot \pi = \frac{\pi}{3} - \pi \cdot 23/12
26,426
-1/2 = \dfrac12 + (-1)
-18,147
17 = 2 \cdot (-1) + 19
-2,707
\sqrt{5} + \sqrt{16\cdot 5} + \sqrt{9\cdot 5} = \sqrt{5} + \sqrt{80} + \sqrt{45}
23,788
\left(\frac{1}{40} \cdot 9 + \frac{3}{40}\right) \cdot 100 = 30
-186
\tfrac{8!}{5! \cdot (5 \cdot (-1) + 8)!} = \binom{8}{5}
-473
π*7/4 = 63/4*π - 14*π
11,792
-5^{1 / 2} + 7^{\frac{1}{2}} - 6^{1 / 2} - 6^{\frac{1}{2}} = 5^{\frac{1}{2}} + 7^{1 / 2} - 6^{\dfrac{1}{2}}\cdot 2
32,114
-b + b\cdot a - a = (b + (-1))\cdot a - b
1,515
0z + xz = zx
-7,793
(-20 + 20 i)/(-4) = -\frac{20}{-4} + i \cdot 20/(-4)
7,896
61 = 7 * 7 + 3 * 3 + 1^2 + 1^2 + 1^2 = 5^2 + 5^2 + 3^2 + 1 * 1 + 1 * 1
15,346
y + c + h = h + y + c
39,502
\cos(\pi - x) = -\cos(x)
5,798
x*F * F = X_D*x * x - X_D*F^2 = X_B*x^2 - X_B*F^2 = X_B*x^2 - (X_D*X_B - X_D*F)^2
-26,506
(9\cdot (-1) + x\cdot 8)^2 = x \cdot x\cdot 64 - x\cdot 144 + 81
-2,885
3^{\frac{1}{2}}*2 = (5 + 1 + 4*\left(-1\right))*3^{\frac{1}{2}}
-7,740
-8 \cdot i/\left(-4\right) + \dfrac{1}{-4} \cdot 12 = \dfrac{1}{-4} \cdot (12 - i \cdot 8)
39,883
-\sin{a} = \sin{-a}
21,861
4 \cdot x + \left(-1\right) = (\sqrt{x + 2} + 3 \cdot (-1))^2 = x + 2 - 6 \cdot \sqrt{x + 2} + 9 = x + 11 - 6 \cdot \sqrt{x + 2}
36,414
x^4+1=0 \implies x^4=-1 \implies x^8=1
-9,500
-10 s = -s \cdot 2 \cdot 5
4,558
1 = \frac{1}{100} + \frac{1}{25} + 1/5 + \dfrac14 + \dfrac{1}{2}
-27,273
\sum_{m=1}^\infty \tfrac{1}{m*7^m}*(-11 + 4)^m*(m + 6) = \sum_{m=1}^\infty \tfrac{(-7)^m}{m*7^m}*(m + 6) = \sum_{m=1}^\infty \frac{7^m}{m*7^m}*(-1)^m*\left(m + 6\right) = \sum_{m=1}^\infty \left(-1\right)^m*(m + 6)/m
6,432
(x/N \cdot N)^m = x^m/N \cdot N
-2,516
6 \cdot 5^{1 / 2} = (4 + 5 + 3 \cdot (-1)) \cdot 5^{1 / 2}
9,829
\cos(y) = \sin(y) \Rightarrow \tan(y) = 1
11,724
(a + x \cdot i)^{-1} = \frac{1}{a^2 + x^2} \cdot (a - x \cdot i) = a - x \cdot i
-15,998
5/10 - \frac{1}{10}*9*10 = -\frac{85}{10}
-5,781
\frac{2}{(8(-1) + z)*5} = \frac{2}{5z + 40 (-1)}
19,672
((-1) + 2*n)*\left(2*n + 1\right) = (-1) + 4*n^2
-23,266
\frac25 = 3/5 \cdot 2/3
-1,197
-8/7 \cdot (-8/5) = \frac{1}{\dfrac{1}{8} \cdot (-7)} \cdot ((-1) \cdot 8 \cdot \dfrac15)
21,582
C_2^3 + C_1^3 = (C_1 + C_2) \cdot (C_1^2 + C_2 \cdot C_2 - C_2 \cdot C_1)
12,349
(1 - t)^3 = -t^3 + 1 - 3 t + t^2 \cdot 3
2,977
(X - \frac{1}{2}n)/\left(\sqrt{n/4}\right) = -\sqrt{n} + X*2/(\sqrt{n})
-5,163
\frac{0.48}{100} = \dfrac{1}{100} \cdot 0.48
17,056
\mathbb{E}(B_n\cdot X_n) = \mathbb{E}(X_n)\cdot \mathbb{E}(B_n)
28,418
N/g = \dfrac{N}{g}
34,629
(\dfrac12)^5\cdot \left(1/2\right)^5\cdot {10 \choose 5} = \dfrac{63}{256}
24,959
3^{1/2}/2 \times 3^{1/2}/2 = 3/4
11,210
X + I = -X + I + 2\cdot X
11,534
(-z + r) \times (r^{b + (-1)} + r^{2 \times (-1) + b} \times z + \dotsm + r \times z^{b + 2 \times (-1)} + z^{(-1) + b}) = r^b - z^b
34,621
\frac{{71 \choose 11}}{{80 \choose 20}} = \dfrac{17}{23471690}
-19,458
\frac{2}{7\cdot 1/3}1/3 = \frac23\cdot \dfrac37
-26,000
-72/\left(-8\right) = 9
16,875
34 = 21 \cdot 2 + 8 \cdot (-1)
4,416
\frac{2\cdot (q + 263)}{2\cdot q + \left(-1\right)} = \frac{2\cdot q + 526}{2\cdot q + (-1)} = 1 + \frac{527}{2\cdot q + (-1)}
16,195
(-c + d) (c + d) = d * d - c^2
20,575
\mathbb{E}\left[\sin(Z)\right] = \sin(\mathbb{E}\left[Z\right])
-12,383
5 \cdot 5 \cdot 6 = 150
6,315
2^{N + 1} = (1 + 1)^{N + 1} = {N + 1 \choose 0} + {N + 1 \choose 1} + ... + {N + 1 \choose N + 1}
7,914
1 + 2 + \dots + n + \left(-1\right) + n - n = 1 + 2 + \dots + n + (-1)
14,575
e + 4 + 36 + 4 \cdot b + 12 \cdot h = 0 \Rightarrow 4 \cdot b + 12 \cdot h + e = -40 \cdot ... \cdot 3
38,382
B_0*x_0 = B_0*x_0
33,217
c = c \cdot 2 - c
-409
\frac{7!}{3!*4!} = 35
8,635
3/5 = \frac1r*((-1) + p) \Rightarrow 3/5*r + 1 = p
-4,484
(2\cdot (-1) + z)\cdot (z + 3\cdot \left(-1\right)) = 6 + z^2 - z\cdot 5
25,360
\tfrac{p \cdot 1/q}{\frac{1}{q} \cdot p + 1} = \frac{1}{1 + y} \cdot y \Rightarrow \dfrac{p}{q} = y
20,909
\left(i*\sin\left(-\pi\right) + \cos\left(-\pi\right)\right)*8 = -8
-2,279
2/13 = -\frac{6}{13} + 8/13
31,354
|x| = \|\dfrac12\cdot (x + y) + (x - y)/2\| \leq \frac{1}{2}\cdot (|x + y| + |x - y|)
39,218
-bd = -b d
3,597
\left(w!*2 = 2 \Rightarrow w! = 1\right) \Rightarrow w = \left\{0, 1\right\}
35,529
\frac{y^f}{y^b} = y^{f - b} = \frac{1}{y^{b - f}}
-1,933
-\dfrac{1}{4}*\pi = \pi/3 - 7/12*\pi
31,722
\sin(x) + \sin(B) + \sin(z) = 0 = \cos(x) + \cos(B) + \cos\left(z\right)
6,448
2*3^k + 3^{k + 1} c_{k+1} = 3*3^k c_{k+1} + 3^k*2
53,969
(4/9 - \dfrac59)\cdot 2\cdot \pi\cdot i\cdot (-\frac{1}{i}) = \dfrac{\pi\cdot 2}{9}
35,307
d \cdot 3 + 3f = 3\left(d + f\right)
-22,375
n^2 + n\cdot 7 + 12 = (n + 3)\cdot (4 + n)
29,907
x^4 - 5x^3 + 5x^2 + 5x + 6(-1) = (x^2 - 2x + 3(-1)) (x^2 - 3x + 2) = (x + 1) (x + 3\left(-1\right)) (x + \left(-1\right)) (x + 2(-1))
-8,095
\dfrac{-2 + i*16}{-1 - i*5} = \tfrac{1}{-5i - 1}(-2 + 16 i) \frac{-1 + i*5}{i*5 - 1}
7,075
\frac{17}{4 \cdot 17} \cdot 3 = \frac{51}{68}
36,995
-2 \cdot x = \frac{\mathrm{d}}{\mathrm{d}x} (-x^2)
18,664
(R^4 + R^3 + R^2 + R + 1)\cdot (\left(-1\right) + R) = \left(-1\right) + R^5
7,332
197431271037 = (3 \cdot 7 \cdot 11 \cdot 13) \cdot (3 \cdot 7 \cdot 11 \cdot 13) \cdot 21893
-15,423
\dfrac{1/y}{y^6\cdot x^2}\cdot x^2 = \frac{x^2\cdot \frac{1}{y}}{(y^3\cdot x)^2}
283
\dfrac{k}{1 + k} + \frac{1}{\left(k + 1\right)\cdot \left(k + 2\right)} = \frac{k + 1}{k + 2}
6,179
\frac{1}{S_2} \cdot (S_2 - C_2) = 1/4 \Rightarrow S_2 = C_2 \cdot 4/3
19,645
18a+6b=6\cdot(3a+b)
21,607
123*345*x = 123*x*345