id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-10,720 | 2/2 \cdot \left(-\dfrac{r + 8 \cdot (-1)}{2 \cdot r + 5}\right) = -\frac{1}{4 \cdot r + 10} \cdot (16 \cdot \left(-1\right) + r \cdot 2) |
52,320 | |c| = |-c| |
-5,175 | 30.1*10^8 = 10^{5 + 3}*30.1 |
11,566 | x^2 = \frac12x \cdot x + x^2/2 |
-26,543 | (3 + 5 \cdot j) \cdot (3 - 5 \cdot j) = 9 - 25 \cdot j^2 |
32,982 | (7\cdot (-1) + y\cdot 2)\cdot (y + 5) = 2\cdot y^2 + y\cdot 3 + 35\cdot (-1) |
15,191 | \tfrac{1}{a \cdot b} = \frac{1}{a \cdot b} = a \cdot b^2 |
-15,257 | \tfrac{p^2}{\frac{1}{k^8*\frac{1}{p^8}}} = \dfrac{1}{\frac{1}{k^8}*p^8}*p^2 |
23,223 | 1 - 4\cdot j + 3\cdot \left(-1\right) = 2\cdot (-1) - j\cdot 4 |
12,220 | -1 = \frac1s \cdot ((-2) \cdot \frac1s) rightarrow 2 = s^2 |
6,400 | \left(Z + x\right) \cdot W = W \cdot Z + x \cdot W |
40,020 | B^{m + 1} = B^m \cdot B |
26,861 | 0 = 2 \times (-1) + (4 - x)^2 + x^2 - 2 \times (4 - x) - 2 \times x\Longrightarrow x^2 - 4 \times x + 3 = (x + (-1)) \times (x + 3 \times (-1)) = 0 |
3,314 | -(t - \tfrac{\beta}{2})^2 + \beta^2/4 = -t^2 + \beta*t |
8,139 | \cos(\sin^{-1}(z)) = \sqrt{-z * z + 1} |
19,730 | \left(-1\right) + e^z = 1 + \frac{z}{1} + z^2/2! + \frac{z^3}{3!} + z^4/4! + ... + (-1) |
37,334 | -\infty \cdot \infty = -\infty |
735 | \sqrt{n}\cdot \frac52 = \sqrt{n}\cdot 2 + \frac{1}{2\cdot \sqrt{n}}\cdot n |
-13,432 | \dfrac{ 15 }{ (8 - 5) } = \dfrac{ 15 }{ (3) } = \dfrac{ 15 }{ 3 } = 5 |
6,186 | a^{\frac32}/(\frac1a) = a^{3/2} \cdot a = a^{\dfrac{5}{2}} |
-3,067 | -\sqrt{6} + \sqrt{16} \cdot \sqrt{6} = \sqrt{6} \cdot 4 - \sqrt{6} |
2,168 | \sin^2(x\cdot \sin^2\left(x\right)) = (\sin^2\left(x\right))^2 = \sin^4(x) |
-19,655 | 5*6/(8) = \frac{1}{8}*30 |
5,444 | \frac{B}{z} = \frac1z \cdot B |
6,845 | \left(-2\right)\cdot (-2) = (-1)\cdot \left(-2\right)\cdot 2 |
-3,571 | \frac{72}{90}*\frac{1}{p^4}*p = \dfrac{72*p}{p^4*90} |
14,025 | (n + 7) \times {6 + n \choose n} = 7 \times {n + 7 \choose n} |
28,963 | \mathbb{E}(W^4) = 0\Longrightarrow 0 = \mathbb{E}(W * W) |
27,031 | d^{n + 1} \coloneqq d*d^n |
1,528 | \tfrac{1}{72}*3 * 3 = 1/8 |
17,489 | 1 = 0 \cdot (-((-1) - 1) + 0) + (-1 - (-1) - 1) |
-21,221 | \frac23 = \dfrac{4}{6} |
2,162 | 150 - 3/2\cdot y = \left(-y\cdot 6 + 600\right)/4 |
8,828 | r = (r^2 + 9)^{\frac{1}{2}} \cdot \frac{1}{5}4 \Rightarrow r = 4 |
5,494 | \tfrac12 + \dfrac{\sqrt{-3}}{2} = \sqrt{3} \times i/2 + 1/2 |
17,149 | \left[x,63\right] = 1 \implies 1 = \left[x, 7\right] |
10,351 | \frac{x^{4/3}}{x^{1/3}} = x^{4/3 - \frac{1}{3}} = x^{3/3} = x |
16,428 | (y + 4) \cdot (3 + y^2 - 4 \cdot y) + 13 \cdot ((-1) + y) = y^3 + (-1) |
11,309 | \mathbb{E}(B \cdot Y) = \mathbb{E}(Y) \cdot \mathbb{E}(B) |
19,125 | \left(2 + 1\right) \left(3 + 1\right) = 12 |
25,436 | \left(x - z\right)\cdot (x^2 + x\cdot z + z^2 + 1) = x^3 - z^3 + x - z |
7,578 | 2 \cdot 2 + 13 = 17 |
15,505 | E = V/2 \Rightarrow V < E |
-2,141 | \pi = \pi/3 + 2/3 \cdot \pi |
710 | -3x^2 + 3x + 6 = -3(x^2 - x + 2(-1)) = -3((x - \frac{1}{2})^2 - \dfrac{1}{4}9) |
-12,296 | 5/12 = \frac{q}{18\cdot \pi}\cdot 18\cdot \pi = q |
25,474 | w\times (T + S)\times f = f\times w\times (S + T) |
27,504 | 1/2 \times 2 \times 2 = 2 = \frac12 \times 0 = 0 |
-19,794 | 1.9 = \frac{1}{10}19 |
13,298 | 5^2 + 5 * 5 = (3 * 3 + 4^2)*2 |
3,936 | 5*x^2 - 5*x + 10*(-1) = 5*(x + 2*(-1))*(1 + x) |
-3,888 | y\cdot 3/2 = 3\cdot y/2 |
27,736 | \cos(\pi l*2 + l\pi*0.4) = \cos{\pi l*2.4} |
5,079 | \frac{1}{a^2 + a \cdot b + b^2} \cdot (a^3 - b^3) = -b + a |
16,848 | q \cdot (-(q + (-1)) + q + 3)/4 \cdot (q + 2) \cdot (1 + q) = (q + 2) \cdot (q + 1) \cdot q |
12,858 | \|f_1 + f_2*i\|^{2*k} = \left(f_1^2 + f_2^2\right)^k = \|(f_1 + f_2*i)^k\|^2 |
23,252 | \dfrac{n!}{2! \left(2(-1) + n\right)!} = {n \choose 2} |
7,845 | C \cdot C^{k + (-1)} \cdot D = C \cdot C^{k + \left(-1\right)} \cdot D = C^k \cdot D |
-4,432 | -\frac{3}{5 \cdot (-1) + y} - \dfrac{1}{5 + y} \cdot 2 = \frac{-y \cdot 5 + 5 \cdot (-1)}{y^2 + 25 \cdot (-1)} |
5,026 | 1 + 5 \cdot \tan^4{\pi/10} - 10 \cdot \tan^2{\frac{1}{10} \cdot \pi} = 0 |
505 | (a^2 + b^2)^3 = 8^2 = 64\Longrightarrow 4 = a^2 + b \cdot b |
10,492 | \omega = \dfrac{\omega}{5^{\frac{1}{3}}}5^{1/3} |
-30,254 | \frac{z^2 + 16 (-1)}{z + 4} = \dfrac{1}{z + 4}\left(z + 4\right) (z + 4\left(-1\right)) = z + 4\left(-1\right) |
18,606 | -7 = 4\cdot h + a + b rightarrow 93 = a + b + 4\cdot h + 100 |
19,178 | \frac10 \cdot 0 \cdot 0 = 0^{2 + \left(-1\right)} |
33,285 | \frac15 \cdot 2 = \tfrac25 |
-9,369 | -z\cdot 2\cdot 3\cdot 3 + 2\cdot 2 = 4 - 18\cdot z |
8,354 | 8^{2\cdot r + 1} + 8^{2\cdot r} = (3\cdot 8^r)^2 |
4,804 | s = p/4 + s/4 + \frac12\cdot 0 = \frac14\cdot p + s/4 |
-14,314 | \frac{9}{8 + 7 \cdot (-1)} = \frac{9}{1} = \frac{9}{1} = 9 |
786 | \sqrt{(4x + (-1)) * (4x + (-1))} = |4x + (-1)| = 4x + (-1) |
5,577 | (O - 3\times X)/12 + O/6 = \frac{1}{4}\times (O - X) |
39,207 | \frac{\mathrm{d}}{\mathrm{d}x} (-\sin\left(x\right)) = -\cos(x) |
6,613 | a^2 + ah*2 + h * h = (h + a)^2 |
35,127 | 1/300 = 2/5*\frac{1}{4}*\frac16*3*\frac{1}{15} |
13,244 | 19!\times \frac{1}{17!}\times 22!/24! = 18\times 19/(23\times 24) = 0.6196 |
36,765 | \frac{1}{B}B^{8.4} = B^{7.4} |
-26,445 | (i \cdot 5 + 2 \cdot (-1)) \cdot 8 = 8 \cdot (\frac{40}{8} \cdot i - \frac{16}{8}) |
15,000 | \left(2 (-1) + z\right) \left(2 (-1) + z\right) + 7 \left(2 \left(-1\right) + z\right) = z^2 + 3 z + 10 \left(-1\right) |
5,628 | 2 \cdot 2\cdot 3\cdot 7^2 = 588 |
33,674 | \tan{\rho} = \sin{\rho}/\cos{\rho} |
7,349 | \left|{S\cdot A}\right| = S^{29}\cdot \left|{A}\right| = S\cdot \left|{A}\right| |
12,755 | (k^2 + 1) \cdot (k^2 + (-1)) = (-1) + k^4 |
-20,712 | \frac{1}{9*(-1) - p*4}*(p*\left(-3\right))*\frac22 = \frac{p*(-6)}{-8*p + 18*\left(-1\right)} |
26,778 | x^2*y = \frac{\partial}{\partial x} (x*y^3) |
22,548 | \arcsin(\sin(z + π/2)) = \arcsin(\cos\left(z\right)) |
24,982 | (5 + 2 (-1))^2 = 5^2 - 2\cdot 5\cdot 2 + \left(-2\right)^2 = 25 + 20 (-1) + 4 = 9 |
9,265 | \sqrt{-2\cdot \sqrt{5} + 6} = \sqrt{-\sqrt{20} + 6} |
17,331 | z^4 - 7 \cdot z^2 + 1 = (z^2 + 1)^2 - 9 \cdot z^2 = (z \cdot z + 1 + 3 \cdot z) \cdot (z^2 + 1 - 3 \cdot z) |
-9,747 | 0.01 \cdot (-84) = -\frac{84}{100} = -\dfrac{1}{25} \cdot 21 |
41,914 | 5/4 = \tfrac14\cdot 5 |
20,536 | \frac{1}{24} + \frac{1}{2} + 1/4 + 1/8 + \frac{1}{12} = 1 |
17,627 | A*C^2 = A*C^2 |
-20,802 | \frac{36 + 40*k}{k*10 + 9} = \dfrac{10*k + 9}{10*k + 9}*\frac{1}{1}*4 |
8,829 | 2*(4 x^2 - 3 x + (-1)) = 2 (x + (-1)) (x + \dfrac{1}{4}) = \dfrac{1}{2 \left(x + \left(-1\right)\right) (4 x + 1)} |
-11,596 | 0 + 5 \cdot (-1) + i \cdot 4 = i \cdot 4 - 5 |
36,847 | 60 = 1.2 \cdot 50 = (1 + 0.2) \cdot 50 = 50 + 0.2 \cdot 50 |
5,568 | n - 2\cdot (3 + (-1)) = 4\cdot (-1) + n |
22,563 | (z \cdot x') \cdot (z \cdot x') = z \cdot x' \cdot z \cdot x' = z \cdot x' |
5,288 | 1 + 3 + \cdots + 2m + (-1) + 2\left(m + 1\right) + (-1) = m \cdot m + 2m + 1 = (m + 1)^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.