id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
29,741 | 4\cdot l^2 + 4\cdot (-1) = 4\cdot (l \cdot l + (-1)) = 4\cdot (l + 1)\cdot (l + (-1)) |
38,931 | i + 1 = -i + i\times 2 + 1 |
10,969 | \tan(20) = \tfrac{b}{x} \Rightarrow x \times \tan(20) = b |
2,869 | |A| = H \implies A^2 = |A|\cdot |A| = H\cdot H = H^2 |
2,706 | \sin{\sigma}\cdot \cos{a} + \sin{a}\cdot \cos{\sigma} = \sin(a + \sigma) |
16,117 | \dfrac{2\times \tfrac13}{1/3}\times 40 = 2\times 40 = 80 |
31,982 | 1010\cdot x - 404\cdot x = 606\cdot x |
20,802 | 15/34 = \frac{6 + 9}{14 + 20} |
14,635 | \left( {e_1}_1, {e_2}_1\right) + ( {e_1}_2, {e_2}_2) = ( {e_1}_1 + {e_1}_2, {e_2}_1 + {e_2}_2) = ( {e_1}_2, {e_2}_2) + ( {e_1}_1, {e_2}_1) |
-22,776 | \frac{27}{30} = 3\cdot 9/\left(3\cdot 10\right) |
24,743 | l_1\cdot (1 + l_2) = l_2\cdot l_1 + l_1 |
30,988 | \frac{1}{5 + (-1)} \cdot (100 \cdot (-1) + 5^{25} + (-1)) = (101 \cdot \left(-1\right) + 5^{25})/4 |
-3,987 | \dfrac{6}{a^2} = \frac{6}{a^2} |
-20,690 | 6/1*\frac{s + 10*(-1)}{s + 10*(-1)} = \frac{60*(-1) + s*6}{s + 10*(-1)} |
-24,843 | 745 = 252\cdot \left(-1\right) + 997 |
39,700 | |c_1| + |c_2| = c_1 - c_2 = c_1 - c_2 |
-21,609 | \sin(-5/6*\pi) = -0.5 |
-20,434 | \left(5\cdot y + 6\right)/\left(-3\right)\cdot \frac99 = \frac{1}{-27}\cdot \left(45\cdot y + 54\right) |
-4,079 | r\cdot 2/3 = r\cdot 2/3 |
-19,016 | \dfrac{1}{12}\cdot 11 = \tfrac{C_s}{36\cdot \pi}\cdot 36\cdot \pi = C_s |
-20,638 | \frac{1}{-z \cdot 21 + 14} \cdot \left(z \cdot 56 + 49 \cdot \left(-1\right)\right) = \frac{7 \cdot (-1) + 8 \cdot z}{2 - 3 \cdot z} \cdot \frac{7}{7} |
40,138 | 6 = 2\cdot 3 = (1 + \sqrt{-5})\cdot \left(1 - \sqrt{-5}\right) |
-22,759 | \frac{49}{35} = \dfrac{7\cdot 7}{7\cdot 5} |
-9,454 | 35\cdot (-1) - 15\cdot l = -3\cdot 5\cdot l - 5\cdot 7 |
3,755 | \frac{1}{2} \cdot 45 \cdot \left(2 \cdot 79 + 44 \cdot (-4)\right) = -405 |
27,510 | L = (L + 2)^{1 / 2} \Rightarrow L = 2 |
-9,818 | 9/25*\dfrac{9}{10} = 9*9/(25*10) = 81/250 |
27,638 | \dfrac{1}{m!}\cdot m \cdot m = \tfrac{m}{\left(m + (-1)\right)!} < \frac{m}{(m + (-1))\cdot (m + 2\cdot (-1))} |
17,587 | h^{i + 1}*x = h^{1 + i}*x |
37,809 | 2^n \cdot 2 = 2^{n + 1} |
15,141 | m^4\cdot 16 = -(-1)^4 + 1 + (2m)^4 |
33,045 | |( f, d)| = |( d, f)| \leq \|f\|_2 \cdot \|d\|_2 |
27,491 | B/C + Z/C = (B + Z)/C |
32,025 | 4 \times x = -3 \times D^2 + D^3 \Rightarrow D^3 - D^2 \times 3 + D \times 4 - 5 \times x = -x + 4 \times D |
16,243 | x + x^2 + \cdots \cdot x^n = \frac{-x^n + 1}{-x + 1} \cdot x |
25,426 | (1 + m)^4 = m^4 + 4 \cdot m^3 + 6 \cdot m^2 + m \cdot 4 + 1 |
-29,567 | (2 + z^5 + z*6)/z = 2/z + z^5/z + \tfrac{z*6}{z} 1 |
21,582 | A^3 + B \cdot B^2 = (B^2 + A^2 - A\cdot B)\cdot (B + A) |
36,656 | 1 + 3\cdot 910 = 2731 |
40,038 | \left(-1\right)*0.01 + 1 = 0.99 |
12,560 | b^3 + 3*b^2 + 5*b + 5 = 2 + (b + 1)^3 + (1 + b)*2 |
34,977 | \dfrac{1}{5}*5 = 4/4 |
40,542 | 2^n/2 = 2^{\left(-1\right) + n} |
6,467 | 1 + 2 \cdot \left((-1) + k\right) = (-1) + 2 \cdot k |
24,330 | g t = g t |
-30,114 | d/dz (2 z^2) = 2 d/dz z^2 = 2*2 z^1 = 4 z |
18,653 | \left(h\cdot f\right)^2 = h^2\cdot f^2 |
21,876 | 50 + 1 - 2 (-7) + 1^2 - 2*2 (-1) + 2 (-7) + 2^2 + 2 (-1) = 58 |
3,850 | x \cdot x \cdot x + (-1) = (1 + x^2 + x)\cdot (x + (-1)) |
75 | 1/6 = 1/11 + \frac{1}{22} + \tfrac{1}{33} |
31,407 | \frac{n}{n} = \frac1n\cdot n |
-9,151 | q*2*2*5 = 20 q |
20,910 | 237 = 3 \times (-1) + 3 \times 2^6 + 2^4 \times 3 |
-22,051 | \frac12 = \dfrac{8}{16} |
-5,128 | 7.6\cdot 10^0 = 10^{1 - 1}\cdot 7.6 |
18,813 | z - \sin(z) = z - z - \dfrac{z^3}{6} + ... = \frac{1}{6}*z^3 + ... |
8,127 | a \cdot 8 - 18 \cdot a \cdot a = 0 \Rightarrow a = \frac{8}{18} = 4/9 |
30,809 | \frac{12}{16}*\frac{11}{15} = 132/240 = 11/20 |
162 | \dfrac{1}{17} = \frac{1}{51} \cdot 3 |
2,840 | 2! = \dfrac{1}{3} \cdot 3! = 6/3 = 2 |
-3,790 | \frac{1}{x}x^4*20/12 = 20 x^4/(12 x) |
28,804 | s^D \cdot s^A = s^{D + A} |
-1,496 | \dfrac{18}{45} = \tfrac{18 \cdot \tfrac{1}{9}}{45 \cdot \frac{1}{9}} = 2/5 |
16,825 | x^4 - x^2 + 2 \cdot (-1) = x^4 + 2 \cdot x^2 + 1 = (x^2 + 1)^2 |
-1,407 | -\frac91*9/4 = \frac14*9/((-1)*\dfrac19) |
-3,343 | -2^{1/2} + 32^{1/2} + 18^{1/2} = (16 \cdot 2)^{1/2} + (9 \cdot 2)^{1/2} - 2^{1/2} |
18,813 | y - \sin{y} = y - y - \dfrac{1}{6}\cdot y^3 + ... = \dfrac{1}{6}\cdot y \cdot y \cdot y + ... |
12,546 | \cos^2\left(x\right) = \frac12 \cdot (1 + \cos(x \cdot 2)) |
20,598 | Y \cdot Z = Z^{\dfrac12} \cdot Y \cdot Z^{1/2} |
-11,803 | (\frac18)^2 = 1/64 |
22,384 | 8.75 = \frac19\cdot 3.15\cdot 25 |
29,629 | -\left\lfloor{1 + \beta}\right\rfloor + \left\lfloor{1 + x}\right\rfloor = \left\lfloor{x}\right\rfloor - \left\lfloor{\beta}\right\rfloor |
18,947 | 0 = h \cdot b rightarrow 0 = h\text{ or }b = 0 |
32,389 | 1729 = 1^3 + 12 12^2 |
14,835 | f^{\frac13}/f = f^{\dfrac{1}{3} + (-1)} = f^{-2/3} = \frac{1}{f^{2/3}} = \dfrac{1}{f^{\frac{2}{3}}} |
18,020 | e^{y + i*2\pi} = e^y e^{i*2\pi} = e^y |
-9,294 | -48*q + 56*(-1) = -2*2*2*2*3*q - 2*2*2*7 |
-26,202 | 14/2 + 3*(-1) + 6/3 = 7 + 3*\left(-1\right) + 2 = 6 |
29,249 | 2^x - 2^{2 (-1) + x} (x + (-1)) + 2^{x + 4 (-1)} \left(2 (-1) + x\right) (x + 3 \left(-1\right))/2! - \cdots = x + 1 |
36,099 | \sqrt{(-3)^2 + 7^2} = \sqrt{58} |
1,220 | \sin{\tfrac{1}{6}*\pi} = \cos{\frac{\pi}{3}} = 1/2 |
35,311 | \tfrac{1}{ZY} = 1/(YZ) \neq \frac{1}{ZY} |
28,373 | 158 = 2 \cdot 4^3 + 4^2 + 4^1 \cdot 3 + 2 \cdot 4^0 |
-6,706 | \frac{1}{100} + \frac{80}{100} = \tfrac{8}{10} + 1/100 |
-20,395 | 9/9 \frac{1 + 5 k}{k + 9 \left(-1\right)} = \frac{k \cdot 45 + 9}{9 k + 81 \left(-1\right)} |
9,778 | (3000 + 2*x)/40 = \dfrac{3000}{40} + 2*x/40 = 75 + x/20 |
22,397 | 2/3 \cdot (1/3 \cdot 3 + \tfrac{2}{3} \cdot 2) + \frac13 = 17/9 |
27,138 | \frac{1}{24} + \frac{1}{8} + \tfrac{1}{30} = 1/5 |
15,859 | x = \cot{-\theta} \implies -\theta = \operatorname{arccot}(x) |
14,881 | \frac{1}{26}\cdot 105 = \dfrac{1}{26}\cdot 35 + \frac{35}{13} |
-26,514 | \left(9 \cdot (-1) + 8 \cdot x\right)^2 = (8 \cdot x) \cdot (8 \cdot x) - 2 \cdot 8 \cdot x \cdot 9 + 9^2 |
2,751 | -\frac{1}{2^{(-1) + m}} + 2 = \frac{2^m + (-1)}{2^{m + (-1)}} |
18,709 | 4! - 3! \cdot {4 \choose 1} + 2! \cdot {4 \choose 2} - {4 \choose 3} \cdot 1! + {4 \choose 4} \cdot 0! = 9 |
23,233 | 1 + 4 (-1) = 7 + 10 \left(-1\right) = 997 + 1000 (-1) |
23,544 | \cos{\xi}*\sin{\xi}*2 = \sin{\xi*2} |
412 | \sin{y} = \sin(-y + 2\cdot y) |
11,953 | 1 = 35/70 + \frac{1}{296}148 |
-708 | \left(e^{\pi \cdot i \cdot 11/12}\right)^{17} = e^{11 \cdot \pi \cdot i/12 \cdot 17} |
2,091 | z + \alpha/2 + \dfrac{\alpha}{2} = \alpha + z |
28,862 | 31*0.417 = \frac{31*417}{1000} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.