id
int64
-30,985
55.9k
text
stringlengths
5
437k
11,077
2 \cdot 2^{x + 1} + (-1) - 2^x = 3 \cdot 2^x + \left(-1\right) > 2 \cdot 2^x + (-1)
26,646
Y^2 + 4Y + 4 = \left(Y + 2\right)^2 = 0\Longrightarrow Y = -2
14,625
n\cdot x\cdot g = \frac{1}{2}\cdot x^2\cdot k\Longrightarrow x = 2\cdot n\cdot g/k = 0.126\cdot n
-15,899
-7\cdot \frac{4}{10} + 6\cdot \frac{1}{10}\cdot 6 = 8/10
49,251
6! \cdot 7 \cdot 6 \cdot 5 = 151,200
-27,563
\frac{dz}{dT} = \frac{1}{\left(-1\right) (5 T + 2 z)} ((-1) \left(6 T^2 - 5 z\right)) = \dfrac{1}{5 T + 2 z} \left(6 T T - 5 z\right)
-6,342
\frac{4}{y \cdot y - 13 \cdot y + 42} = \frac{4}{\left(y + 6 \cdot (-1)\right) \cdot (7 \cdot \left(-1\right) + y)}
25,961
c^{\dfrac{p}{q}} \cdot c^{t_2/(t_1)} = c^{\frac{1}{q \cdot t_1} \cdot (p \cdot t_1 + t_2 \cdot q)} = c^{p/q + \frac{t_2}{t_1}}
8,988
1 = w_j^3 \Rightarrow \left(-w_j\right) * \left(-w_j\right) * \left(-w_j\right) = -w_j^3 = -1
-13,930
\frac{1}{6 + 3}72 = 72/9 = \frac1972 = 8
13,887
-347 + 5 \cdot \left(-1\right) = -352
29,445
6 = 2*3 = (4 - 10^{\frac{1}{2}}) (4 + 10^{\frac{1}{2}})
4,883
a^{x - z} = \dfrac{a^x}{a^z}
-10,754
10 = -6 + 5*f + 7*(-1) = 5*f + 13*(-1)
1,818
e^y\times e^{z'} = e^{y + z'}
3,653
n + 6\cdot n^2 = (1 + 6\cdot n)\cdot n
25,152
\frac59 \cdot 6/10 = \frac{1}{3}
12,792
(x' + z')^2 - (x' - z') \cdot (x' - z') = x' z' \cdot 4
11,213
z + 6 = \sqrt{x \cdot x + z \cdot z}\Longrightarrow x^2 = z\cdot 12 + 36
-10,619
\frac{1}{9 + 6 \cdot x} \cdot 8 \cdot \dfrac44 = \tfrac{32}{36 + x \cdot 24}
30,621
x*e = x\Longrightarrow x*e = x
782
4^{\left(-1\right) + n} \cdot 4 = 4^n
-2,835
16^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} + 9^{\dfrac{1}{2}} \cdot 3^{1 / 2} = 3^{1 / 2} \cdot 4 + 3 \cdot 3^{\frac{1}{2}}
23,621
1 + (-1) + 2\cdot \cos^2(x) = 0 + 2\cdot \cos^2(x) = 2\cdot \cos^2\left(x\right)
2,087
(y^4 + y^3 + y^2 + y + 1) (y + (-1)) = y^5 + (-1)
17,245
\frac{1}{-z + 1}*z^2 = z^2 + z^3 + z^4 + \cdots
6,103
r\cdot (x + z) = z\cdot r + r\cdot x
-2,906
\sqrt{13}\cdot \left((-1) + 2\right) = \sqrt{13}
29,085
x^3 + 1 = \left(x + 1\right) (1 + x^2 - x)
15,078
2*(-1) + \frac1D*3 = 3*\left(-1\right) + (D + 3)/D
12,055
x\cdot \tfrac{\sin(\|x\|\cdot k)}{k\cdot \|x\|}\cdot k^2 = \sin(k\cdot \|x\|)\cdot \frac{x}{\|x\|}\cdot k
9,865
\cot{\varphi} = \tan(\frac{\pi}{2} - \varphi)
-7,960
\tfrac{7 - i \times 24}{-4 \times i - 3} = \frac{1}{-3 - 4 \times i} \times (7 - i \times 24) \times \frac{1}{i \times 4 - 3} \times (-3 + 4 \times i)
14,552
\dfrac{2 + 2*\sin{D}}{\cos{D}*(1 + \sin{D})} = \frac{2}{\cos{D}} = 2*\sec{D}
25,009
\cos(x) = \frac{1}{2} \cdot (e^{i \cdot x} + e^{-i \cdot x}) = \cosh\left(i \cdot x\right)
-14,320
\dfrac{28}{7 + 3 (-1)} = \frac{28}{4} = \frac{1}{4} 28 = 7
37,796
\operatorname{E}[W_1\cdot W_2] = \operatorname{E}[W_1]\cdot \operatorname{E}[W_2]
-3,963
\frac{1/2*5}{k^3} = \tfrac{1}{2*k * k^2}*5
6,077
(2^{\frac{1}{2}} + y^2)\cdot (-2^{\frac{1}{2}} + y^2) = y^4 + 2\cdot \left(-1\right)
-9,379
3 - i \cdot 2 \cdot 3 = 3 - 6 \cdot i
-6,478
\frac{2}{3\cdot x + 3\cdot (-1)} = \dfrac{1}{\left((-1) + x\right)\cdot 3}\cdot 2
-10,310
\frac55\cdot (-\dfrac{1}{m\cdot 6 + 6\cdot (-1)}) = -\frac{5}{30\cdot m + 30\cdot (-1)}
9,011
1/\cos(\arcsin(x)) = d/dx \arcsin(x)
-3,024
(9 \cdot 7)^{1 / 2} + (4 \cdot 7)^{1 / 2} = 28^{1 / 2} + 63^{\tfrac{1}{2}}
6,111
(1 + 2/n)^n = (\frac{1}{n}*(n + 2))^n = (\frac{n + 2}{n + 1})^n*((n + 1)/n)^n
17,245
\frac{1}{1 - y} \cdot y \cdot y = y^2 + y \cdot y \cdot y + y^4 + \cdots
9,873
\mathbb{N}_{k} \coloneqq \left\{1, k, \cdots\right\}
15,898
\frac{5}{18} = \frac{5}{4 + 5} \frac{1}{4 + 5 + \left(-1\right)}\left(5 + (-1)\right)
-4,423
\dfrac{1}{y + 5} + \frac{2}{\left(-1\right) + y} = \frac{9 + y*3}{y^2 + 4y + 5(-1)}
38,021
0 = -(0 + 0\cdot \left(-1\right))
18,164
\frac{13}{3!} \cdot 12 \cdot 11 = {13 \choose 3}
13,428
(f + b)^2 = 2fb + f^2 + b^2
12,828
2\cdot u = (1 + u)\cdot (1 - u^2) = 1 - u^3 - u \cdot u + u
434
-\frac{1}{z + 1} = \frac{1}{(2 + z) (z + 1)}z - \dfrac{2}{z + 2}
45,277
48 = 3\times 2^4
-22,227
y^2 + y\cdot 16 + 63 = (7 + y)\cdot \left(y + 9\right)
1,393
\mathbb{E}[(R + V)^2] = \mathbb{E}[R^2] + \mathbb{E}[V^2] + 2*\mathbb{E}[V*R]
40,462
\lim_{x \to 3} \frac{1}{3 - x} \cdot (2 \cdot x - e^{x + 3 \cdot (-1)} + 5 \cdot (-1)) = \dfrac{1}{(-1) \cdot (x + 3 \cdot (-1))} \cdot \left(-e^{x + 3 \cdot (-1)} - 5 + 2 \cdot x\right) = \frac{1}{\left(-1\right) \cdot (x + 3 \cdot (-1))} \cdot ((-1) \cdot \left(e^{x + 3 \cdot (-1)} - -5 + 2 \cdot x\right)) = \frac{1}{(-1) \cdot y} \cdot ((-1) \cdot (e^y - -5 + 2 \cdot x)) = (e^y - -5 + 2 \cdot x)/y
32,019
b \cdot b \cdot b + 1 = (b^2 - b + 1) (1 + b)
11,630
\sum_{k=1}^n ((-1) + k) \cdot (1 + k) = \sum_{k=1}^n (\left(-1\right) + k^2)
48,244
8 = 2^2 \cdot 2 \cdot 5^0
17,795
\dfrac{1}{d/h + z} \cdot (b/a + z) \cdot a/h = \frac{a \cdot z + b}{z \cdot h + d}
2,391
Y_2 Y_1 + B = Y_1 \implies B = Y_1 - Y_2 Y_1
54,189
X = X
16,196
\frac{\frac{2}{31}}{25} = \frac{2}{775}
27,447
\dfrac{\dfrac{1}{19^{20}}}{\frac{1}{20^{20}}} \cdot 1 = \dfrac{20^{20}}{19^{20}} \approx 2.79
-29,592
\frac{d}{dz} (2\cdot z^2) = 2\cdot d/dz z^2 = 2\cdot 2\cdot z^1 = 4\cdot z
820
\tan(\frac{\pi}{8}) = (-1) + 2^{1 / 2}
-7,030
\frac{5}{21} = \frac{4}{7} \cdot \frac19 \cdot 6 \cdot 5/8
-11,458
-4 + 12 + i\cdot 19 = 8 + i\cdot 19
28,182
1 + y*2 = 2*x + 1 \implies x = y
27,714
(h + 1)^2*d = (h^2 + 2*h + 1)*d = h^2*d + 2*h*d + d = h*d*h + h*d + h*d + d
-10,707
-\frac{1}{a\cdot 48 + 48}\cdot (a\cdot 16 + 20\cdot (-1)) = \dfrac14\cdot 4\cdot (-\dfrac{1}{12 + a\cdot 12}\cdot (a\cdot 4 + 5\cdot \left(-1\right)))
23,843
25=(-1) \times(-25)
11,444
ad = \frac{1}{4}(-(a - d) * (a - d) + \left(d + a\right)^2)
-7,219
\dfrac{1}{15}\cdot 2 = 3/9\cdot \dfrac{1}{10}\cdot 4
-1,491
-5/3*2/9 = \frac{1}{9*\dfrac{1}{2}}*((-5)*\frac{1}{3})
-20,788
\frac{1}{5 + l\cdot 5}\cdot (7\cdot (-1) - 7\cdot l) = \frac{1}{l + 1}\cdot \left(l + 1\right)\cdot (-7/5)
3,015
1 = 1/\left(25\cdot x\right) \Rightarrow x = \frac{1}{25}
32,217
{4 \choose 2} = \dfrac{3}{2!}4 = 6
27,856
88 = (-1) + 89
16,070
8/3 = \frac{40}{60} + 2
32,489
e^{x + 1} = e*e^x \geq 2*e^x
33,984
2*9*11 = 198
2,549
y \cdot y + x \cdot x + x \cdot y \cdot 2 = \left(x + y\right)^2
2,220
(12 + 1)*(1 + 6) = 91
8,530
\frac{1}{N^N}(N + (-1))^N = (\frac{1}{N}(N + (-1)))^N = (1 - \frac{1}{N})^N
7,406
1680/71 = 23 + \frac{1}{71}47
-20,105
\frac{7 + 49 q}{q\cdot 28 + 4} = \tfrac{1 + 7q}{q\cdot 7 + 1}\cdot \frac147
-18,133
13*\left(-1\right) + 14 = 1
34,326
0 + 4/9 + 2 \cdot \frac13 = \tfrac{1}{9} \cdot 10
-7,658
\frac{22\cdot i - 7}{i\cdot 3 + 2} = \frac{-7 + i\cdot 22}{i\cdot 3 + 2}\cdot \frac{-i\cdot 3 + 2}{2 - 3\cdot i}
18,302
\frac{\sin(7\pi)}{\sin(4\pi)} = \dfrac{0}{0} = 1
17,522
2\cdot 3^2 + 3\cdot (\frac{7}{2}) \cdot (\frac{7}{2}) = \dfrac{219}{4} \neq 17
4,263
3^3 - 3\cdot 3^2 + 3\cdot (-1) + 3 = 3^3 - 3^3 + 0 = 0
8,058
(a + c^{\frac{1}{2}}\cdot b) \cdot (a + c^{\frac{1}{2}}\cdot b) = a^2 + c\cdot b^2 + a\cdot c^{1 / 2}\cdot b\cdot 2
41,119
H_1 = \begin{pmatrix}1 & 2\\3 & 4\end{pmatrix} = H_2^2 \Rightarrow det\left(H_1\right) = det\left(H_2^2\right) = det\left(H_2\right)^2
26,665
{n \choose 2} - {n + (-1) \choose 2} = (n + (-1)) \cdot (n - n + 2 \cdot (-1))/2 = n + (-1)
42,273
10/15 = \tfrac{2}{3}
20,405
1 = 1 + 0\times i