id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
1,863 | \left|{A + B\cdot C}\right| = \left|{C\cdot B + A}\right| |
41,200 | i = 2^{2 x + 1} + (-1) = 2\cdot 4^x + (-1) |
4,149 | 2 + n^2 + 3 \cdot n = (n + 2) \cdot (1 + n) |
-17,726 | 1 = 93 \cdot \left(-1\right) + 94 |
4,480 | Y + e^x*6 = (x + 3*(-1))*z \Rightarrow z = \frac{6*e^x + Y}{x + 3*(-1)} |
20,739 | (-1) \cdot (-1) + \left(-3\right)^2 + 5^2 = 1 + 9 + 25 = 35 |
-3,951 | \frac{44\cdot f^5}{f^5\cdot 55} = \frac{f^5}{f^5}\cdot \frac{1}{55}\cdot 44 |
12,952 | 16 \cdot (-1) + i^8 = (i^2 + 2) \cdot (4 + i^4) \cdot \left(i \cdot i + 2 \cdot (-1)\right) |
17,236 | 335 \cdot 6 + 2 = 2012 |
27,756 | b_n + d_n \coloneqq b_n + d_n |
12,398 | \frac{\binom{4}{3}}{\binom{52}{11}} = \frac{1}{52!}11! \cdot 41! \cdot 4 |
338 | n = \frac22\cdot n = (2\cdot n + 1)/2 |
-3,988 | \frac{k^2*35}{30*k} = \frac{1}{30}*35*k * k/k |
-6,640 | \dfrac{4}{(10 (-1) + t)*2} = \frac{4}{t*2 + 20 \left(-1\right)} |
-20,755 | -1/3 \frac{-5z + 2(-1)}{-5z + 2(-1)} = \frac{5z + 2}{-15 z + 6(-1)} |
19,439 | 1 = z \cdot n + m \cdot x\Longrightarrow x \cdot m = -n \cdot z + 1 |
-20,345 | \frac{8 + t\cdot 4}{18 t + 16} = 2/2 \dfrac{2t + 4}{8 + t\cdot 9} |
11,277 | {m + (-1) \choose k + \left(-1\right)} + {m + (-1) \choose k} = {m \choose k} |
5,981 | \frac{1}{z + (-1)}\cdot z = \frac{1}{(-1) + z} + 1 |
-2,431 | \sqrt{4} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{9} = \sqrt{5} \cdot 2 + \sqrt{5} \cdot 3 |
13,672 | \sqrt{(\frac{\sqrt{2}}{2} \cdot 6)^2 + (4 \cdot \sqrt{2})^2} = 5 \cdot \sqrt{2} |
13,077 | \cos\left(r*2\right) = z\Longrightarrow \frac{\mathrm{d}z}{\mathrm{d}r} = -2\sin(2r) |
-2,350 | 5/20 - \frac{1}{20}4 = \dfrac{1}{20} |
8,071 | e^{x \cdot x} = x^x \Rightarrow e^x = x |
7,489 | \frac{\frac{1}{2}*l}{2} = l/4 |
45,231 | (10^{-x} - 10^{-x + (-1)}) \cdot 9^x = 10^{-x + (-1)} \cdot (10 + \left(-1\right)) \cdot 9^x = \dfrac{9^{x + 1}}{10^{x + 1}} = (9/10)^{x + 1} |
3,188 | 2^m + (-1) = \frac{2^m + (-1)}{\left(-1\right) + 2} |
15,684 | \binom{s^x}{i} = \frac{1}{i!\cdot (-i + s^x)!}\cdot (s^x)! |
17,543 | G_n\cdot G_x\cdot G_l = G_x\cdot G_l\cdot G_n |
16,267 | -(2 - z) = 2\cdot (-1) + z |
35,781 | 0 = f^2 + h^2 \cdot 3 - 2 \sqrt{3} h f rightarrow f = h \sqrt{3} |
-6,142 | \frac{1}{(4 + x)\cdot (x + 9)}\cdot 4 = \tfrac{4}{36 + x \cdot x + 13\cdot x} |
35,241 | \overline{z \cdot w} = \overline{w} \cdot \overline{z} |
6,335 | 3.5 = \dfrac16\cdot (1 + 2 + 3 + 4 + 5 + 6) |
18,593 | \frac{1}{X\cdot A} = \dfrac{1}{A\cdot X} |
5,789 | 4 \cdot x = x^4 \Rightarrow 0 = x, 4^{1/3} |
4,101 | -x^3 + x^2 + 2\cdot (-1) = (2\cdot (-1) - x \cdot x + 2\cdot x)\cdot (1 + x) |
41,728 | 3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = 3 |
-7,291 | \frac{\frac{1}{7}}{2} \times 2 = \frac{1}{7} |
-4,055 | \frac{g \cdot g\cdot 9}{5}\cdot 1 = g^2\cdot \frac15\cdot 9 |
13,713 | \dfrac{7}{2} \cdot 2 = 7 |
-1,485 | \frac{\dfrac15 \times \left(-9\right)}{(-9) \times \dfrac{1}{2}} = -\frac95 \times (-2/9) |
-20,020 | \frac{1}{14} \cdot 4 = 2/7 \cdot 2/2 |
11,721 | \frac{dA}{dx} \cdot c = \frac{\partial}{\partial x} (A \cdot c) |
11,666 | \left(b + a\right) * \left(b + a\right) = b*a*2 + a^2 + b * b |
353 | (8 (-1) + 22)/7 = 2 |
6,688 | (81 + 144)^{\frac{1}{2}} = 15 |
12,578 | \frac{1}{z + (-1)} \cdot (z^{n + 1} - z) = z + z^2 + z^2 \cdot z + \dotsm + z^{n + (-1)} + z^n |
129 | \cos{\frac{1}{7}*\pi} = \cos{\frac{13*\pi}{7}} |
19,613 | h^2 + h\cdot 10 = (5 + h + 5)\cdot (5 + h + 5\cdot (-1)) |
30,689 | 4 + \sqrt{3}*2 = 2\sqrt{3} + 4 |
13,122 | m - j - j*0 = -j + m |
19,920 | z^S - y^S = -y^S + z^S |
23,713 | 10^{1/2}*c + 2*d + b*6^{1/2} = 0 \Rightarrow 0 = d,0 = 6^{1/2}*b + c*10^{1/2} |
-23,298 | 0.13 \times 0.017 = 0.13 \times 0.13 \times 0.13 = 0.13^2 \times 0.13 |
-20,152 | \frac{3}{7} \frac{k + 8(-1)}{k + 8(-1)} = \frac{24 (-1) + 3k}{7k + 56 (-1)} |
40,169 | {5 + 3 + (-1) \choose 3 + \left(-1\right)} = {7 \choose 2} = 21 |
7,727 | z^T\cdot C\cdot y = (z^T\cdot C\cdot y)^T = y^T\cdot C\cdot z |
16,837 | v\cdot (b + a) = v\cdot a + v\cdot b |
27,468 | 6300 = \frac{10!}{2!^2 \cdot 2!^2 \cdot 3!^2} |
23,226 | b_{l\cdot i}\cdot a_{i\cdot l} = a_{l\cdot i}\cdot b_{l\cdot i} |
39,878 | h^2 + x^2 = x^2 + h^2 |
4,255 | x^9 + \left(-1\right) = (x^3 + (-1)) \cdot (x^6 + x^3 + 1) = (x + (-1)) \cdot \left(x^2 + x + 1\right) \cdot (x^6 + x^3 + 1) |
10,193 | b * b^2 = b*b^2 = b = b |
7,990 | {\left(n - k\right)/2 + k + (-1) \choose k + \left(-1\right)} = {(n + k + 2 (-1))/2 \choose k + (-1)} |
-2,145 | \frac{29}{12}\cdot \pi = \pi/2 + \pi\cdot 23/12 |
30,803 | 4^y = 4 \cdot 4^{(-1) + y} |
-22,940 | \frac{5*12}{8*12} = \frac{60}{96} |
1,328 | y \cdot 2 \cdot y \cdot y \cdot y^2 \cdot 2 = y^{2 + 2 + 1} \cdot 2 \cdot 2 |
3,661 | 20 + 8 + \frac{1}{6}4 = 172/6 |
20,834 | 1/(1/B) = B |
34,140 | 0 = y^T Bx = x^T B^T y |
-1,214 | -8/1 (-\tfrac{1}{5}4) = (\frac{1}{5} \left(-4\right))/\left((-1) \tfrac{1}{8}\right) |
6,333 | h\cdot d\cdot f = \left(h + d + 2\cdot h\cdot d\right)\cdot f = h + d + 2\cdot h\cdot d + f + 2\cdot h\cdot f + 2\cdot d\cdot f + 4\cdot h\cdot d\cdot f |
-10,318 | \dfrac{2}{2} \cdot \left(-\frac{1}{3 \cdot y + 5 \cdot (-1)} \cdot 6\right) = -\tfrac{1}{6 \cdot y + 10 \cdot (-1)} \cdot 12 |
-10,313 | 2 = -5 - 40 \cdot i + 40 \cdot (-1) = -40 \cdot i + 45 \cdot (-1) |
-28,951 | (\frac{1}{4})^{1 / 2} = 1/2 |
23,897 | \cos^2{X} + \cos^2{X} = 2 \cos^2{X} |
-5,621 | \frac{5}{2\cdot \left(y + 5\right)} = \frac{5}{2\cdot y + 10} |
10,761 | 0 = 1 - \operatorname{P}(F) + \operatorname{P}\left(B\right) - \operatorname{P}\left(F\right)\cdot \operatorname{P}\left(B\right) = (1 - \operatorname{P}(F))\cdot (1 - \operatorname{P}(B)) |
5,862 | \frac12 \cdot (1/n - \frac{1}{2 + n}) = \frac{1}{(n + 2) \cdot n} |
30,994 | a^{301}\cdot x^{301} = \left(x\cdot a\right)^{301} |
6,820 | \frac1R \cdot x + J/R = (J + x)/R |
19,290 | \sqrt{2}/2 + \sqrt{2}*i/2 + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}*i}{2} = \sqrt{2} |
27,242 | (2 a + 2 g + c)/3 = \left(3 a + 4 c\right)/5 = (2 a + g + 2 c)/3 |
29,621 | 3 = (9 + 3\cdot (-1))/2 |
21,662 | 1 = g x/(g x) = x \frac{1}{g} g/x |
4,420 | \int_0^1 {1*2y}\,dy = -\int_1^0 {1*y*2}\,dy |
-4,441 | x \cdot x + 5\cdot x + 4 = (x + 1)\cdot (x + 4) |
30,028 | \left(-1^2 \cdot 4.9 + (a + 1)^2 \cdot 4.9\right)/a = \frac{4.9}{a} \cdot ((1 + a)^2 - 1^2) |
12,590 | \sin^5(z) = \sin^4(z\cdot \sin(z)) = (1 - \cos^2(z)) \cdot (1 - \cos^2(z))\cdot \sin\left(z\right) |
17,796 | 2^k = \left(k + 1\right)\cdot (2 + k)\cdot \dots\cdot 2\cdot k |
3,986 | -2\cdot 2\cdot x + 5\cdot x = x |
20,042 | g = g^1 = g^{s*k + q*n} = (g^k)^s*(g^n)^q |
7,342 | \frac{x * x + (-1)}{(-1) + x} = \frac{(x + (-1))*\left(1 + x\right)}{x + (-1)} |
10,849 | y \cdot y - 2\cdot c\cdot y + b = (y - c) \cdot (y - c) + b - c^2 |
24,881 | 1/2 = 0.0111*\dots = 0.1 |
-7,044 | \frac{3}{10}\cdot \frac{3}{11} = 9/110 |
10,164 | e \cdot a \cdot e = a = e \cdot a \cdot e |
30,630 | X = e^{\log_e\left(X\right)} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.