id
int64
-30,985
55.9k
text
stringlengths
5
437k
1,863
\left|{A + B\cdot C}\right| = \left|{C\cdot B + A}\right|
41,200
i = 2^{2 x + 1} + (-1) = 2\cdot 4^x + (-1)
4,149
2 + n^2 + 3 \cdot n = (n + 2) \cdot (1 + n)
-17,726
1 = 93 \cdot \left(-1\right) + 94
4,480
Y + e^x*6 = (x + 3*(-1))*z \Rightarrow z = \frac{6*e^x + Y}{x + 3*(-1)}
20,739
(-1) \cdot (-1) + \left(-3\right)^2 + 5^2 = 1 + 9 + 25 = 35
-3,951
\frac{44\cdot f^5}{f^5\cdot 55} = \frac{f^5}{f^5}\cdot \frac{1}{55}\cdot 44
12,952
16 \cdot (-1) + i^8 = (i^2 + 2) \cdot (4 + i^4) \cdot \left(i \cdot i + 2 \cdot (-1)\right)
17,236
335 \cdot 6 + 2 = 2012
27,756
b_n + d_n \coloneqq b_n + d_n
12,398
\frac{\binom{4}{3}}{\binom{52}{11}} = \frac{1}{52!}11! \cdot 41! \cdot 4
338
n = \frac22\cdot n = (2\cdot n + 1)/2
-3,988
\frac{k^2*35}{30*k} = \frac{1}{30}*35*k * k/k
-6,640
\dfrac{4}{(10 (-1) + t)*2} = \frac{4}{t*2 + 20 \left(-1\right)}
-20,755
-1/3 \frac{-5z + 2(-1)}{-5z + 2(-1)} = \frac{5z + 2}{-15 z + 6(-1)}
19,439
1 = z \cdot n + m \cdot x\Longrightarrow x \cdot m = -n \cdot z + 1
-20,345
\frac{8 + t\cdot 4}{18 t + 16} = 2/2 \dfrac{2t + 4}{8 + t\cdot 9}
11,277
{m + (-1) \choose k + \left(-1\right)} + {m + (-1) \choose k} = {m \choose k}
5,981
\frac{1}{z + (-1)}\cdot z = \frac{1}{(-1) + z} + 1
-2,431
\sqrt{4} \cdot \sqrt{5} + \sqrt{5} \cdot \sqrt{9} = \sqrt{5} \cdot 2 + \sqrt{5} \cdot 3
13,672
\sqrt{(\frac{\sqrt{2}}{2} \cdot 6)^2 + (4 \cdot \sqrt{2})^2} = 5 \cdot \sqrt{2}
13,077
\cos\left(r*2\right) = z\Longrightarrow \frac{\mathrm{d}z}{\mathrm{d}r} = -2\sin(2r)
-2,350
5/20 - \frac{1}{20}4 = \dfrac{1}{20}
8,071
e^{x \cdot x} = x^x \Rightarrow e^x = x
7,489
\frac{\frac{1}{2}*l}{2} = l/4
45,231
(10^{-x} - 10^{-x + (-1)}) \cdot 9^x = 10^{-x + (-1)} \cdot (10 + \left(-1\right)) \cdot 9^x = \dfrac{9^{x + 1}}{10^{x + 1}} = (9/10)^{x + 1}
3,188
2^m + (-1) = \frac{2^m + (-1)}{\left(-1\right) + 2}
15,684
\binom{s^x}{i} = \frac{1}{i!\cdot (-i + s^x)!}\cdot (s^x)!
17,543
G_n\cdot G_x\cdot G_l = G_x\cdot G_l\cdot G_n
16,267
-(2 - z) = 2\cdot (-1) + z
35,781
0 = f^2 + h^2 \cdot 3 - 2 \sqrt{3} h f rightarrow f = h \sqrt{3}
-6,142
\frac{1}{(4 + x)\cdot (x + 9)}\cdot 4 = \tfrac{4}{36 + x \cdot x + 13\cdot x}
35,241
\overline{z \cdot w} = \overline{w} \cdot \overline{z}
6,335
3.5 = \dfrac16\cdot (1 + 2 + 3 + 4 + 5 + 6)
18,593
\frac{1}{X\cdot A} = \dfrac{1}{A\cdot X}
5,789
4 \cdot x = x^4 \Rightarrow 0 = x, 4^{1/3}
4,101
-x^3 + x^2 + 2\cdot (-1) = (2\cdot (-1) - x \cdot x + 2\cdot x)\cdot (1 + x)
41,728
3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = 3
-7,291
\frac{\frac{1}{7}}{2} \times 2 = \frac{1}{7}
-4,055
\frac{g \cdot g\cdot 9}{5}\cdot 1 = g^2\cdot \frac15\cdot 9
13,713
\dfrac{7}{2} \cdot 2 = 7
-1,485
\frac{\dfrac15 \times \left(-9\right)}{(-9) \times \dfrac{1}{2}} = -\frac95 \times (-2/9)
-20,020
\frac{1}{14} \cdot 4 = 2/7 \cdot 2/2
11,721
\frac{dA}{dx} \cdot c = \frac{\partial}{\partial x} (A \cdot c)
11,666
\left(b + a\right) * \left(b + a\right) = b*a*2 + a^2 + b * b
353
(8 (-1) + 22)/7 = 2
6,688
(81 + 144)^{\frac{1}{2}} = 15
12,578
\frac{1}{z + (-1)} \cdot (z^{n + 1} - z) = z + z^2 + z^2 \cdot z + \dotsm + z^{n + (-1)} + z^n
129
\cos{\frac{1}{7}*\pi} = \cos{\frac{13*\pi}{7}}
19,613
h^2 + h\cdot 10 = (5 + h + 5)\cdot (5 + h + 5\cdot (-1))
30,689
4 + \sqrt{3}*2 = 2\sqrt{3} + 4
13,122
m - j - j*0 = -j + m
19,920
z^S - y^S = -y^S + z^S
23,713
10^{1/2}*c + 2*d + b*6^{1/2} = 0 \Rightarrow 0 = d,0 = 6^{1/2}*b + c*10^{1/2}
-23,298
0.13 \times 0.017 = 0.13 \times 0.13 \times 0.13 = 0.13^2 \times 0.13
-20,152
\frac{3}{7} \frac{k + 8(-1)}{k + 8(-1)} = \frac{24 (-1) + 3k}{7k + 56 (-1)}
40,169
{5 + 3 + (-1) \choose 3 + \left(-1\right)} = {7 \choose 2} = 21
7,727
z^T\cdot C\cdot y = (z^T\cdot C\cdot y)^T = y^T\cdot C\cdot z
16,837
v\cdot (b + a) = v\cdot a + v\cdot b
27,468
6300 = \frac{10!}{2!^2 \cdot 2!^2 \cdot 3!^2}
23,226
b_{l\cdot i}\cdot a_{i\cdot l} = a_{l\cdot i}\cdot b_{l\cdot i}
39,878
h^2 + x^2 = x^2 + h^2
4,255
x^9 + \left(-1\right) = (x^3 + (-1)) \cdot (x^6 + x^3 + 1) = (x + (-1)) \cdot \left(x^2 + x + 1\right) \cdot (x^6 + x^3 + 1)
10,193
b * b^2 = b*b^2 = b = b
7,990
{\left(n - k\right)/2 + k + (-1) \choose k + \left(-1\right)} = {(n + k + 2 (-1))/2 \choose k + (-1)}
-2,145
\frac{29}{12}\cdot \pi = \pi/2 + \pi\cdot 23/12
30,803
4^y = 4 \cdot 4^{(-1) + y}
-22,940
\frac{5*12}{8*12} = \frac{60}{96}
1,328
y \cdot 2 \cdot y \cdot y \cdot y^2 \cdot 2 = y^{2 + 2 + 1} \cdot 2 \cdot 2
3,661
20 + 8 + \frac{1}{6}4 = 172/6
20,834
1/(1/B) = B
34,140
0 = y^T Bx = x^T B^T y
-1,214
-8/1 (-\tfrac{1}{5}4) = (\frac{1}{5} \left(-4\right))/\left((-1) \tfrac{1}{8}\right)
6,333
h\cdot d\cdot f = \left(h + d + 2\cdot h\cdot d\right)\cdot f = h + d + 2\cdot h\cdot d + f + 2\cdot h\cdot f + 2\cdot d\cdot f + 4\cdot h\cdot d\cdot f
-10,318
\dfrac{2}{2} \cdot \left(-\frac{1}{3 \cdot y + 5 \cdot (-1)} \cdot 6\right) = -\tfrac{1}{6 \cdot y + 10 \cdot (-1)} \cdot 12
-10,313
2 = -5 - 40 \cdot i + 40 \cdot (-1) = -40 \cdot i + 45 \cdot (-1)
-28,951
(\frac{1}{4})^{1 / 2} = 1/2
23,897
\cos^2{X} + \cos^2{X} = 2 \cos^2{X}
-5,621
\frac{5}{2\cdot \left(y + 5\right)} = \frac{5}{2\cdot y + 10}
10,761
0 = 1 - \operatorname{P}(F) + \operatorname{P}\left(B\right) - \operatorname{P}\left(F\right)\cdot \operatorname{P}\left(B\right) = (1 - \operatorname{P}(F))\cdot (1 - \operatorname{P}(B))
5,862
\frac12 \cdot (1/n - \frac{1}{2 + n}) = \frac{1}{(n + 2) \cdot n}
30,994
a^{301}\cdot x^{301} = \left(x\cdot a\right)^{301}
6,820
\frac1R \cdot x + J/R = (J + x)/R
19,290
\sqrt{2}/2 + \sqrt{2}*i/2 + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}*i}{2} = \sqrt{2}
27,242
(2 a + 2 g + c)/3 = \left(3 a + 4 c\right)/5 = (2 a + g + 2 c)/3
29,621
3 = (9 + 3\cdot (-1))/2
21,662
1 = g x/(g x) = x \frac{1}{g} g/x
4,420
\int_0^1 {1*2y}\,dy = -\int_1^0 {1*y*2}\,dy
-4,441
x \cdot x + 5\cdot x + 4 = (x + 1)\cdot (x + 4)
30,028
\left(-1^2 \cdot 4.9 + (a + 1)^2 \cdot 4.9\right)/a = \frac{4.9}{a} \cdot ((1 + a)^2 - 1^2)
12,590
\sin^5(z) = \sin^4(z\cdot \sin(z)) = (1 - \cos^2(z)) \cdot (1 - \cos^2(z))\cdot \sin\left(z\right)
17,796
2^k = \left(k + 1\right)\cdot (2 + k)\cdot \dots\cdot 2\cdot k
3,986
-2\cdot 2\cdot x + 5\cdot x = x
20,042
g = g^1 = g^{s*k + q*n} = (g^k)^s*(g^n)^q
7,342
\frac{x * x + (-1)}{(-1) + x} = \frac{(x + (-1))*\left(1 + x\right)}{x + (-1)}
10,849
y \cdot y - 2\cdot c\cdot y + b = (y - c) \cdot (y - c) + b - c^2
24,881
1/2 = 0.0111*\dots = 0.1
-7,044
\frac{3}{10}\cdot \frac{3}{11} = 9/110
10,164
e \cdot a \cdot e = a = e \cdot a \cdot e
30,630
X = e^{\log_e\left(X\right)}