id
int64
-30,985
55.9k
text
stringlengths
5
437k
8,824
\sin{2\cdot y} = \sin^2{y}
-3,850
72/132\cdot \frac{1}{x^3}\cdot x^5 = \frac{72}{x^3\cdot 132}\cdot x^5
10,322
-d = d + h \cdot h = d \cdot h
-24,209
10 + 7 * 7 = 10 + 7*7 = 10 + 49 = 59
11,764
\frac{dy}{dx} = \dfrac{1}{3*y^2}*3*x * x = \frac{1}{y^2}*x^2
-9,274
3*7 p p + 3p p p = p^3*3 + p^2*21
311
\dfrac{3}{5}*14/33 = 14/55
3,576
\int \frac{1}{\sqrt{9 + y^2}}\,dy = \int \tfrac{1}{\sqrt{y^2 + 3^2}}\,dy
39,504
m = l + (-1) \implies 1 + m = l
632
\frac{\partial}{\partial t} \left(y\cdot x\right) = y\cdot \frac{dx}{dt} + x\cdot \frac{dy}{dt}
12,326
\frac{C*\dfrac{1}{\sqrt{G}}}{G^{1/2}}*1 = \tfrac{C^{\frac{1}{2}}}{G^{1/2}}*\frac{C^{1/2}}{G^{\tfrac12}}
-11,790
125^{-\frac13} = \left(1/125\right)^{\frac13}
-20,353
-27/(-36) = \frac{3}{4}*(-\frac{9}{-9})
17,289
(-|D \times D \times u| + |D^2 \times u_i|) \times (|D^2 \times u| + |D^2 \times u_i|) = -|u \times D^2|^2 + |D^2 \times u_i|^2
-6,389
\frac{2}{(n + 9) \cdot 5} = \frac{2}{5 \cdot n + 45}
10,085
\left((-1) + x\right) \cdot (x^2 + x + 1) = x^3 + (-1)
30,906
(-1) + 2 \cdot x = x \Rightarrow x = 1
14,541
(-1) + 10^{2\times x + 2} = (-1) + 10^2\times ((-1) + 10^{2\times x}) + 10^2
-1,504
36/72 = \frac{36 \cdot \frac{1}{36}}{72 \cdot 1/36} = 1/2
34,787
{(-1) + x \choose p + (-1)} = {(-1) + x \choose x - p}
26,760
c_1\cdot \dfrac1x/c_3\cdot \dots^{-1}/c_n = c_1\cdot |x\cdot |c_3|\cdot \dots|\cdot c_n
31,956
(1 + 3^{\frac12}\cdot x + x^2)\cdot (1 - x\cdot 3^{1/2} + x^2)\cdot (1 + x^2) = x^6 + 1
21,684
(m + 1)^2 - m^2 = 2*m + 1 = m + 1 + m
-16,940
5 = 5 \cdot 2 \cdot c + 5 \cdot (-4) = 10 \cdot c - 20 = 10 \cdot c + 20 \cdot (-1)
37,113
3 + 6 = 9 = 9 + 2 (-1) = 2
11,128
\frac{1}{27} = \frac{1}{3}\cdot \frac{1}{3}\cdot \frac{1/2}{3}\cdot 1\cdot 2
-2,332
5/16 = -4/16 + 9/16
8,388
24 = a a + d^2 + f^2 + 12 \geq 4 a + 4 d + 4 f
20,239
\frac{1}{\tan{y}*(1 + \cos{2*y})} = \csc{2*y} = \frac{1}{\sin{2*y}}
30,363
5/3 = \frac13\times 5
24,624
-\frac12\cdot (-7! + 8!) + 9!/(3!\cdot 2!) = 12600
809
y! = 10! \cdot 11 \cdot 12 \cdot \cdots \cdot y > 10! \cdot 11^{y + 10 \cdot (-1)}
-29,016
0.48\times23.9=11.472
31,956
\left(x^2 + 1 + x \cdot 3^{1/2}\right) \cdot (x^2 + 1 - 3^{1/2} \cdot x) \cdot (1 + x^2) = x^6 + 1
29,181
\sqrt{(-1)\times (-1)} = \sqrt{(-1)^2} = -1
10,350
\dfrac{3^{120}}{12} = \frac{1}{4}\cdot 3^{119}
5,552
-\dfrac{7}{7 + T^l} + 1 = \frac{1}{T^l + 7} \cdot T^l
-18,431
\frac{1}{y^2 - y\cdot 7}\cdot \left(y^2 - y\cdot 4 + 21\cdot \left(-1\right)\right) = \frac{(y + 3)\cdot (y + 7\cdot (-1))}{(7\cdot \left(-1\right) + y)\cdot y}
17,704
z_{k + 1} = 2 \cdot z_k - z_k \cdot z_k \leq 2 \cdot z_{k + 1} - z_k^2
2,471
\frac{\partial}{\partial x} \operatorname{atan}\left(a + b\cdot x\right) = \dfrac{1}{(a + b\cdot x)^2 + 1}\cdot b
10,597
|f| \times |g| = |g \times f|
3,377
\cos{b} \times \sin{e} + \cos{e} \times \sin{b} = \sin\left(e + b\right)
7,258
agx = gxa
7,407
-\frac1h\cdot f + \frac{x}{v} = (x\cdot h - f\cdot v)/(h\cdot v)
-1,655
-\pi \cdot 3/2 + 2 \cdot \pi = \frac{\pi}{2}
18,807
\frac{d \cdot A \cdot x}{x \cdot d} = \frac{d \cdot A \cdot x}{x \cdot d}
-20,252
\frac{1}{q \cdot (-24)} \cdot (12 + 4 \cdot q) = \dfrac{q + 3}{q \cdot \left(-6\right)} \cdot \frac44
21,963
\frac{11}{12} = 1/2 + 1/3 + \dfrac{1}{12}
-2,692
(1 + 5) \cdot \sqrt{3} = 6 \cdot \sqrt{3}
-634
-10 \cdot \pi + 11 \cdot \pi = \pi
-26,389
\left(-3\right)*(-3)*(-3)*(-3) = 81
11,598
16 \cdot \left(-\tan^{-1}(2) + \pi/2\right) + 4 \cdot \tan^{-1}(2) - 4 \cdot 2 = 8 \cdot \left(-1\right) + 8 \cdot \pi - \tan^{-1}(2) \cdot 12
24,927
5\cdot y^2 = 247^3 + 273\cdot (-1) + 9 \implies 3013797 = y^2
4,736
-2^2 \frac{120*119}{2} + 13^4 = 1
17,572
\delta^2 + z^2 + \delta \cdot z = -z \cdot \delta + (\delta + z)^2
37,320
b + h + a = h + a + b
38,371
-{12 \choose 2} + {17 \choose 2} = 70
6,528
D*(z^2 + (-1)) + D = D*(z^2 + \left(-1\right) + 1)
-17,667
9 \cdot (-1) + 10 = 1
4,963
\frac{q}{2} \cdot 2f = fq
29,442
x - r + 2 \cdot r = -(-x - r)
-18,287
\frac{x\cdot 8 + x^2}{x^2 + x\cdot 13 + 40} = \frac{x\cdot (8 + x)}{(5 + x)\cdot (x + 8)}
11,782
30/4 = \frac{120}{16} = \frac{(1 + 7)*15}{1 + 15}
-7,232
3/10 = 3/4 \cdot 2/5
13,557
a \cdot x + c \cdot x = x \cdot (a + c)
19,287
h\cdot f = \dfrac{f}{f}\cdot h\cdot f
-4,882
7.0 \times 10^{4\,+\,3} = 7.0 \times 10^{7}
25,295
\left(2\cdot k + 1\right)^2 = 4\cdot k^2 + 4\cdot k + 1 = 4\cdot (k \cdot k + k) + 1
-16,369
9*4^{1/2}*13^{1/2} = 9*2*13^{1/2} = 18*13^{1/2}
11,322
m^2 = m + 2\cdot {m \choose 2}
-5,395
2.8\cdot 10 = \frac{2.8}{10^6}\cdot 10 = \dfrac{2.8}{10^5}
392
\dfrac{1}{4} = -\frac{11}{16} + \dfrac{1}{16}*5*3
6,341
\dfrac{2}{3 - \dfrac{2}{-\frac{2}{3 - \frac{1}{3 + 2 \left(-1\right)} 2} + 3}} = 2
2,301
32 \cdot j \cdot j = (j \cdot 8)^2/2
20,378
34 \cdot 34\cdot 4 = 48^2 + 4^2 + 48^2
443
\left(m + 1\right)\cdot (1 + x_m) = x_{1 + m} \Rightarrow \frac{1}{1 + x_m}\cdot x_{m + 1} = 1 + m
-10,343
-\dfrac{51}{4} = -51/4
20,700
A = A * 1
-20,433
\frac{48*(-1) - 18*k}{k*3 + 8} = -\tfrac61*\frac{8 + 3*k}{8 + k*3}
1,764
z + z_1 + z_2 = z_2 + z + z_1
6,424
z\cdot y = \frac{1}{z\cdot y} = \ldots = y\cdot z
-13,833
\frac{1}{8 + 5 \left(-1\right)} 9 = 9/3 = \frac{9}{3} = 3
1,482
LF/K = \frac{LF}{F} \frac{1}{K}F \leq L/K F/K
6,239
x_2^2 - x_1^2 = \left(-x_1 + x_2\right)\cdot (x_1 + x_2)
-3,100
(1 + 4*\left(-1\right) + 5)*\sqrt{7} = \sqrt{7}*2
-3,959
\dfrac{12 \cdot x^2}{21 \cdot x} = x^2/x \cdot \frac{1}{21} \cdot 12
8,828
q = 4/5 \cdot (q^2 + 9)^{1/2} \implies q = 4
21,238
\frac{1 \cdot 2}{3 \cdot 2} = \frac{1}{4 + (-1)}
-24,108
(5 + 3)^2 = (8)^2 = 8^2 = 64
14,950
-(1 - B^2) + 1 - B \cdot 2 + B^2 = -2 \cdot B + B^2 \cdot 2
-1,213
\dfrac{42}{20} = 42*\frac{1}{2}/\left(20*\frac{1}{2}\right) = 21/10
7,971
(y^2 + 1) (1 + y) = y^3 + 1 + y + y \cdot y
10,902
4^k + 3^k = \left(1 + (3/4)^k\right) \cdot 4^k
-26,655
(7\cdot x^2 + 2)\cdot \left(7\cdot x^2 + 2\cdot (-1)\right) = -2^2 + (x^2\cdot 7) \cdot (x^2\cdot 7)
-10,383
-\frac{8}{8\cdot a^2}\cdot 5/5 = -\frac{40}{a^2\cdot 40}
4,159
-(n + \left(-1\right))^2 = -n \cdot n + 4 \cdot n - 2 \cdot n + (-1)
-19,046
\dfrac{4}{9} = \frac{1}{81 \cdot \pi} \cdot D_s \cdot 81 \cdot \pi = D_s
26,358
10 \sqrt{30}/5 \sqrt{5} = 10 \sqrt{6}
23,570
1 \cdot 1\cdot 3^2 = 9
11,518
4 \cdot (\frac{4}{3})^{x + (-1)} = 4 \cdot \frac{4^{x + (-1)}}{3^{x + (-1)}} = \dfrac{4^x}{3^{x + \left(-1\right)}}