id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
10,931 | \sin\left(\dfrac{21 π}{2} - π*2/2\right) = \sin(19 π/2) |
14,477 | z = 5 \Rightarrow 25 = z^2 |
18,509 | 3\cdot \sqrt{2} + 1 = 4 - 2\cdot \sqrt{2} - -5\cdot \sqrt{2} + 3 |
13,208 | 0 = w/3 + x \Rightarrow x = -w/3 |
23,375 | (3 + x)*\left(x + 5*(-1)\right) = x^2 + 3*x - 5*x + 15*(-1) |
20,775 | \binom{52}{25} = \dfrac{1}{25! \cdot 27!} \cdot 52! = 477551179875952 |
-21,031 | \frac187 \left(-7/(-7)\right) = -\dfrac{49}{-56} |
716 | x = 2*2x^2 = 8x^4 |
50,169 | 51 = 3*17 |
-2,401 | (-5)^3 = (-5) \times (-5) \times (-5) = 25 \times \left(-5\right) = -125 |
-15,212 | \frac{1}{m^{16} \cdot \frac{1}{m^5 \cdot r^5}} = \dfrac{1}{\tfrac{1}{m^5 \cdot r^5} \cdot m^{16}} |
-2,225 | \dfrac{3}{17} = \tfrac{1}{17} \cdot 9 - 6/17 |
-2,651 | 6*\sqrt{7} = (5 + 1)*\sqrt{7} |
-18,468 | b + 6 = 5 \cdot \left(5 \cdot b + 8 \cdot (-1)\right) = 25 \cdot b + 40 \cdot \left(-1\right) |
8,652 | \frac{5}{x^4} - \frac{5}{x^2} = \frac{5}{x^4}\cdot \left(1 - x \cdot x\right) \gt \frac{15}{4\cdot x^4} |
-8,701 | \frac{8}{6} - 5/4 = 8*2/(6*2) - 5*3/(4*3) = \frac{16}{12} - \frac{1}{12}*15 = \frac{1}{12}*(16 + 15*(-1)) = 1/12 |
28,046 | \dfrac{(2 + x)^3 + 8*(-1)}{2 + x + 2*\left(-1\right)} = \frac{1}{x}*(12*x + 6*x^2 + x^3) = 12 + 6*x + x^2 |
5,938 | 4 - (-b + 1)*4 = 4*b |
15,070 | 2 \cdot \left(-1\right) + 34 = 32 |
3,018 | \frac12 \cdot 160 = 20 \cdot 4 = 80 |
28,591 | \dfrac{1}{-\frac1g + \dfrac{1}{-1/f + g}} = -g + g f g |
41,902 | \frac{-2}{16}=-\frac{1}{8} |
14,874 | \frac{\partial}{\partial x} \left(a^2\cdot x^4\right) = a \cdot a\cdot 4\cdot x^3 |
14,520 | \sqrt{(\cos(x) + (-1))^2 + \sin^2(x)} = \sqrt{2 - 2\cdot \cos(x)} = 2\cdot \sin\left(x/2\right) \lt x |
25,233 | \sin(z\cdot 2)\cdot z\cdot 2 + 2\cdot z^2\cdot \cos(z\cdot 2) = \frac{d}{dz} \left(z \cdot z\cdot \sin(2\cdot z)\right) |
28,491 | \frac{1}{y*(y + (-1))} = -\tfrac1y + \frac{1}{y + (-1)} |
1,909 | (n + 1)^2 \cdot 3 = n \cdot 4 + 3 + 3 \cdot n \cdot n - n \cdot 2 + 1 + n \cdot 4 + 1 |
13,018 | 2*\lambda^2 - \lambda + 3*(-1) = (\lambda + 1)*2*(\lambda + 3*(-1)) = 2*(\lambda + 1)*(\lambda + 3*\left(-1\right)) |
44,044 | \frac11 = 1 |
32,991 | 1! \cdot 2 = 2 |
-26,140 | 3 \cdot 3^3 - 2 \cdot 3 \cdot 3 + 9 \cdot 3 - 3 \cdot 6^3 - 2 \cdot 6^2 + 9 \cdot 6 = 90 + 630 \cdot \left(-1\right) = -540 |
-7,423 | 1/(3\cdot 3) = \frac{1}{9} |
413 | \frac{1}{16^{1 / 2}}6^{1 / 2} = 6^{1 / 2}/4 |
38,090 | 9800*\frac{28}{3} = 274400/3 |
35,138 | -\frac{1}{(1 + x^2)^{\frac{1}{2}5}}x + \dfrac{x}{(1 + x * x)^{3/2}} = \frac{1}{(1 + x^2)^{5/2}}x^3 |
-6,702 | 1/100 + 20/100 = 2/10 + 1/100 |
19,423 | a - t^3 + a^3 = t rightarrow (a - t)\cdot (a^2 + t\cdot a + t \cdot t) + a - t = 0 |
-26,152 | 2\cdot 16^{\frac32} - 2\cdot 4^{\tfrac{3}{2}} = 128 + 16\cdot \left(-1\right) = 112 |
6,904 | 6 + k\cdot 2\cdot 3\cdot 5\cdot 7 = 6 + 210\cdot k |
14,033 | x + 2 \cdot (-x + n) = 2 \cdot n - x |
36,082 | \frac{9}{16} = \left(3/4\right)^2 |
26,080 | B/A = \frac{B}{A}\cdot 1 = \tfrac{B}{A}\cdot 1 = B/A |
37,432 | \frac{1}{4} 3 = \frac34 |
-20,814 | (-r\cdot 35 + 7\cdot \left(-1\right))/35 = \dfrac15\cdot (-r\cdot 5 + (-1))\cdot \frac{1}{7}\cdot 7 |
28,660 | \frac{1}{x^{1/2} + 2} = \tfrac{1}{4 - x}*2 - \dfrac{1}{-x + 4}*x^{1/2} |
17,799 | \left((-1) + k\right)/2 + 2 = \frac{1}{2}*(k + 3) |
32,486 | \tan(\left((-1) \cdot π\right)/4) = -1 |
1,711 | \frac{5}{5 + 4}\cdot \dfrac{6}{6 + 3} = \frac{1}{81}\cdot 30 \approx 0.37 |
34,879 | \dfrac{1}{4} \cdot \left(f - c\right) = \frac{f}{4} - \frac{c}{4} |
-23,194 | -1/2 \cdot 8 = -4 |
18,819 | c \cdot h = -c^2/2 + \frac{1}{2} \cdot (c + h) \cdot (c + h) - h^2/2 |
34,735 | 5 + 31 + 19 \times (-1) + 17 \times (-1) + 11 + 7 \times (-1) + 3 = 7 |
23,952 | {m \choose m - c} = {m \choose c} |
-8,549 | 2/4 - 2/6 = \tfrac{2*3}{4*3} - 2*2/(6*2) = 6/12 - \frac{4}{12} = \frac{1}{12}\left(6 + 4(-1)\right) = 2/12 |
-4,283 | \frac{54\cdot s^5}{s\cdot 45} = \frac{54}{45}\cdot \frac1s\cdot s^5 |
4,042 | \left((1/u)^2 + 1\right)^{1/2} \cdot u = (((\dfrac{1}{u}) \cdot (\dfrac{1}{u}) + 1) \cdot u^2)^{1/2} = (1 + u^2)^{1/2} |
23,627 | (-(k + \left(-1\right)) + N) \times \left(-(k + (-1)) + N + 1\right)/2 = \frac{1}{2} \times (2 + N - k) \times (1 + N - k) |
29,748 | 99 \cdot 100/2 = 4950 |
-3,651 | 8/9 \cdot q^2 = \frac{q^2}{9} \cdot 8 |
8,544 | \left(x + (-1)\right)*(x * x - x*2 + \left(-1\right)) = 1 + x^3 - 3*x^2 + x |
5,137 | -Q^2 + X^2 = (X + Q) \cdot (-Q + X) |
24,612 | \frac{5^{\frac13} \omega}{5^{\frac{1}{3}}}1 = \omega |
2,960 | \sqrt{5} + 2 = -(2\cdot (-1) - \sqrt{5}) |
15,085 | \|x - D\| \leq \|x - D\|^3 \implies D = x |
-9,152 | -q^3*9 = -q*q*3*3*q |
-18,665 | 2n + 2 = 6(n + 3) = 6n + 18 |
-6,696 | \frac{1}{100} + \frac{9}{10} = \frac{90}{100} + 1/100 |
26,570 | -(17 - \sqrt{34} \cdot 3) \cdot (\sqrt{34} \cdot 3 + 17) = 17 |
7,969 | b + \frac12 \cdot \left(-b + a\right) = \frac{1}{2} \cdot (a + b) |
3,465 | 0 = (x + y + z)^2 = 1 + 2*\left(x*y + x*z + y*z\right) |
22,324 | \tfrac{n}{n + (-1)} = \frac{n + (-1)}{n + \left(-1\right)} + \frac{1}{n + (-1)} = 1 + \frac{1}{n + (-1)} |
-26,434 | \frac17*64 = -16/7*(-4) |
28,991 | \sin{\chi} = \sin(\pi - \chi) |
26,154 | \frac{\partial}{\partial z} z^{l\cdot 2 + 1} = z^{2\cdot l}\cdot \left(2\cdot l + 1\right) |
262 | 3\cdot x^2 \cdot x - 3\cdot x + 9 = 3\cdot (x^3 - x + 3) = 3\cdot \left(x^2 + f\cdot x + d\right)\cdot (x + c) = x^3 + (c + f)\cdot x^2 + \left(f\cdot c + d\right)\cdot x + d\cdot c |
-1,795 | \pi/2 + \pi \cdot 7/12 = \pi \cdot 13/12 |
12,024 | \dfrac{-k + n}{1 + k} {n \choose k} = {n \choose k + 1} |
6,635 | \sin(\frac{1}{3} \cdot \pi) = \sqrt{3}/2 |
23,476 | e^{\dfrac14 \cdot 3 \cdot π \cdot i} \cdot e^{π \cdot i/4} = e^{π \cdot i} = -1 |
29,461 | A^6 = (A^2 + 2 \times A) \times (A^2 + 2 \times A) = A^4 + 4 \times A^3 + 4 \times A^2 = A^3 + 2 \times A^2 + 4 \times A^2 + 8 \times A + 4 \times A^2 = 11 \times A^2 + 10 \times A |
4,544 | y \cdot (n \cdot p_2 + d \cdot n \cdot p_1) = n \cdot p_1 \cdot y \cdot d + y \cdot p_2 \cdot n |
26,323 | (z^2 + x^2 + x \cdot z) \cdot (x^2 - z \cdot x + z^2) = z^4 + x^4 + x^2 \cdot z^2 |
34,243 | Q^c^k = Q^1 \dotsm Q^k |
-11,362 | \left(x + a\right)^2 = (x + a) \cdot \left(x + a\right) = x^2 + 2 \cdot a \cdot x + a \cdot a |
238 | 8^{2 \cdot n} \cdot 2^{4 \cdot n} = (64 \cdot 16)^n = 1024^n |
-5,569 | \frac{3 r}{(6 + r) \left(r + 2 (-1)\right)} = \dfrac{r}{12 (-1) + r^2 + 4 r} 3 |
5,712 | \left(y = -x \cdot 3 + 4 \implies -x \cdot 3 = y + 4 \cdot (-1)\right) \implies x = \left(y + 4 \cdot (-1)\right)/\left(-3\right) |
22,093 | 93.5 = 0.4 \cdot (0 + 95 + 0 \cdot (-1)) + 0.1 \cdot (95 + 0 \cdot (-1) + 5) + 0.4 \cdot \left(0 + 95 + 5 \cdot (-1)\right) + 0.1 \cdot \left(5 + 95 + 5 \cdot \left(-1\right)\right) |
-20,294 | 4/4*\frac{2 + 2*y}{8 - 10*y} = \frac{1}{-40*y + 32}*(8*y + 8) |
49,401 | \frac{1}{\sqrt{95} + 9 \cdot \left(-1\right)} = (\sqrt{95} + 9)/14 = 1 + \left(\sqrt{95} + 5 \cdot \left(-1\right)\right)/14 |
29,036 | \frac{1}{6} = 3/18 = \frac{1}{18} + 2/18 = \frac19 + \dfrac{1}{18} |
16,144 | \dfrac{1}{2} \cdot (\frac{\pi}{2} - \dfrac{\pi}{2}) = 0 |
10,951 | p - x + 1 = \binom{p + 1}{2} + \binom{x + (-1)}{2} - \binom{p}{2} - \binom{x}{2} |
-9,130 | 27 \left(-1\right) + y*15 = -3*3*3 + y*3*5 |
-10,008 | 0.01\cdot \left(-88\right) = -\frac{88}{100} = -22/25 |
478 | 4 = -F*2/5 + F rightarrow 20/3 = F |
12,463 | 2^9*\cos(\frac{2*\pi}{3}) = -2^8 |
941 | exp(x + z) = exp(x)*exp(z) |
11,036 | ((1 + y)^1)^{1/2} = (1 + y)^{\frac{1}{2}} |
-10,383 | -\frac{1}{40\cdot a \cdot a}\cdot 40 = \frac15\cdot 5\cdot (-\frac{1}{a^2\cdot 8}\cdot 8) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.