id
int64
-30,985
55.9k
text
stringlengths
5
437k
6,288
\cos{x/2\cdot 2} = \cos{x}
25,858
x^4 + \mu^4 = -2 (x \mu)^2 + \left(x^2 + \mu^2\right)^2
-2,298
2/11 = -\frac{1}{11} + \tfrac{1}{11} \cdot 3
10,623
(\tfrac12 + i)^2 = (-i + \frac12)^2 + 2 \cdot i
24,409
z^3 + 2 = z \cdot z \cdot z + 8 = (z + 2)\cdot (z^2 - 2\cdot z + 4)
2,701
\left(3 \cdot x = \dfrac{1}{3} \cdot (x + y + z) \implies y + z = 8 \cdot x\right) \implies 4 \cdot x = \frac{1}{2} \cdot (z + y)
24,682
r + r^2 = (r + 1) \cdot r
110
(d_1 + d_2)^2 = d_1 \cdot d_1 + d_2^2 + 2\cdot d_1\cdot d_2
-4,662
(2 + \omega) (\omega + 2 (-1)) = \omega^2 + 4 (-1)
-4,541
\dfrac{1}{(-1) + y^2}(-y + 5(-1)) = \frac{2}{1 + y} - \dfrac{3}{y + (-1)}
-2,678
-2 \cdot \sqrt{5} + \sqrt{5} \cdot 3 = -\sqrt{5} \cdot \sqrt{4} + \sqrt{5} \cdot \sqrt{9}
-3,646
\tfrac{9}{q^3} 10^{-1} = \frac{9}{q^2 q*10}
-12,026
\frac{1}{18} = \frac{r}{6\pi}\cdot 6\pi = r
40,455
\dfrac19 \cdot 4 = \frac{4}{9}
-6,811
210 = 3*7*10
3,528
(x + (-1))*(x + 2) = x^2 + 2*x - x + 2*\left(-1\right) = x * x + x + 2*(-1) = x^2 + x + 1
14,221
\frac{1}{3 + 2\cdot \sqrt{2}} = 3 - \sqrt{2}\cdot 2
-30,552
\frac{512}{64} = \frac{64}{8} = \frac{1}{1}8 = 8
2,756
4 \cdot 3^{1/2} + 7 = (7^2 + (-1))^{1/2} + 7
18,496
F/A = \frac{1}{A \cdot 1/F}
8,224
1/81 = \frac{1}{6 * 6^2}*(5/6 + 1 + 5/6)
2,172
\cos(2) \lt 1 - 2^2/2! + 2^4/4! = -\dfrac{1}{3} \lt 0
24,123
-2e^{-x \cdot 2} = d/dx e^{-x \cdot 2}
27,439
x + x + ... + x = x + 1 + (x + 2) \cdot ... + 2 \cdot x
-3,042
-\sqrt{8} + \sqrt{50} = -\sqrt{4 \cdot 2} + \sqrt{25 \cdot 2}
-26,455
9\cdot z \cdot z + 4 - 12\cdot z = (2 - 3\cdot z)^2
26,708
2^{\tfrac{3}{4}} = \left(2^3\right)^{\frac14}
16,895
M^{1/i + (-1)} = M^{(1 - i)/i} = (M^{1 - i})^{1/i}
47,858
1\cdot 4\cdot 4\cdot 4 = 64
8,786
\frac1z \cdot x = x/z
-2,176
\dfrac{7}{14} = -\frac{2}{14} + \dfrac{1}{14} \cdot 9
21,433
(6^3 + 10^3 + 2^3)=1224
1,778
1/(x h) = 1/(h x) = 1/(h x)
9,524
-\frac{1}{(-1) + x} = \frac{1}{-x + 1}
-17,460
53 \cdot (-1) + 82 = 29
14,974
x^3 + 2x^2 + 2x +1 = (x+1)(x^2+x+1) \in \langle x+1, x^2+x+1 \rangle
13,004
3 \cdot x^2 + 3 \cdot y^2 + 3 \cdot z^2 - 2 \cdot y \cdot x - 2 \cdot x \cdot z - 2 \cdot y \cdot z = (-x + y + z)^2 + (z + x - y)^2 + (x + y - z)^2
27,060
x^6+1=(x^3+1)^2=(x+1)^2(x^2+x+1)^2
10,644
(d + f)/g = (-1) + \left(g + f + d\right)/g
-21,009
\frac{1}{q*4 + 24}*(-7*q + 42*(-1)) = -7/4*\dfrac{q + 6}{q + 6}
31,956
(a \cdot a + 1) \cdot (1 - a \cdot 3^{1/2} + a^2) \cdot (1 + a \cdot 3^{\dfrac12} + a^2) = a^6 + 1
16,000
(\left(-1\right) + 5\cdot l)\cdot l/2 = 2 + 7 + 12 + 17 + \ldots + 5\cdot l + 3\cdot \left(-1\right)
22,623
0 = x^2 + 2 \cdot i \cdot x + 2 \cdot (-1) = (x + i) \cdot (x + i) + (-1) = \left(x + \left(-1\right) + i\right) \cdot (x + 1 + i)
16,840
(-p^2 + p^3)/2 = p^2 \frac{1}{2}((-1) + p)
-7,145
5/52 = 3/13\times \frac{1}{12}\times 5
14,430
z z + \epsilon^2 + 2 \epsilon z = (\epsilon + z)^2
-1,392
\phantom{ \dfrac{9}{2} \times - \dfrac{5}{2}} = \dfrac{9 \times -5}{2 \times 2} = \dfrac{-45}{4}
3,484
x\cdot A_1\cdot A_2 = x\cdot A_2\cdot A_1
20,083
-z_1 = 16 \cdot (-z_1 + z_2) \Rightarrow z_1 \cdot 15 = z_2 \cdot 16
16,334
k^2 \cdot 4 = (k \cdot 2)^2
40,330
l \cdot \int_0^\infty \frac{z^{l + 2 \cdot \left(-1\right)}}{(z^2 + 2^2) \cdot (4^2 + z^2) \cdot \dots \cdot (l^2 + z^2)}\,dz = \int_0^\infty (\sin(z)/z)^l\,dz
10,938
(x + 1) * (x + 1) = (x + 4 + 3*\left(-1\right))^2 = (x + 4)^2 - 6*(x + 4) + 9
7,398
2^6 \cdot (2^7 + (-1)) = 8128
-20,239
\frac11 \times 1 = \frac{q \times 3 + (-1)}{(-1) + 3 \times q}
5,099
aBz = zB a
24,988
1 + \frac{1}{\left(1 + x\right) * \left(1 + x\right)} = \frac{(x + 1)^2 + 1}{(1 + x)^2}
11,160
a^{m + 2\cdot (-1)}\cdot a^2 = a^{m + 2\cdot (-1) + 2} = a^m
17,501
\frac{E_1}{E_1 \cap E_2} = \dfrac{1}{E_2} \cdot E_1 = \dfrac{1}{E_2} \cdot (E_2 + E_1)
7,013
(k^2 + \tfrac{k}{2} + 1)^2 = k^4 + k^3 + 9/4 k^2 + k + 1 > k^4 + k^3 + k^2 + k + 1
17,255
\binom{n}{n} + \binom{n+1}{n} = \binom{n+2}{n+1}
36,514
\frac{1}{2}5 = 2.5
4,280
\frac{1}{2}*(\cos(-b + f) + \cos(b + f)) = \cos(b)*\cos(f)
14,874
a * a*4x * x * x = \frac{\partial}{\partial x} (a^2 x^4)
8,564
\dfrac{y\cdot z}{y + z}\cdot 1 = \dfrac{1}{1/z + 1/y}
-20,518
20 p/(90 p) = \frac{1}{9}2*10 p/(10 p)
21,582
C_2 * C_2^2 + C_1^3 = (C_1^2 - C_2*C_1 + C_2 * C_2)*(C_2 + C_1)
-13,965
(7 + 10 - 5*9)*9 = \left(7 + 10 + 45 (-1)\right)*9 = (7 - 35)*9 = (7 + 35 (-1))*9 = (-28)*9 = (-28)*9 = -252
17,896
24*(-1) + x^3 - x = 0 \Rightarrow x = 3
-1,404
-5/3\cdot 4/5 = \left((-1)\cdot 5\cdot \frac13\right)/(1/4\cdot 5)
26,844
T^w \cdot T^u = T^{w + u}
1,041
(b^k)^{12} = 1 \Rightarrow b^k
-3,865
\frac{1/2}{x^3}3 = \dfrac{3}{2x^3}
16,504
(E_2 + E_1)^2 = E_1^2 + E_1*E_2 + E_2*E_1 + E_2^2
40,253
\dfrac{4}{52} = 17/221
44,047
1 \cdot 1^2 + 6 \cdot 1^2 + 11 + 6 = 24 = 3 \cdot 8
40,761
S_k + S_k = S_k
713
{n \choose 1} \cdot {x \choose 1} + {x \choose 2} = -{n \choose 2} + {n + x \choose 2}
2,531
D'*\left(D + A'*\beta\right) = D*D' + A'*\beta*D'
-20,981
\frac{10\cdot 10^{-1}}{p + 10} = \frac{10}{p\cdot 10 + 100}
12,730
g \cdot \lambda \cdot d = g \cdot (-\lambda - d) = -g - -\lambda - d = -g + \lambda + d
10,908
\pi/4 + \pi/12 = \pi/3
3,932
c + 4^2/2 = -\frac{1}{2\cdot (1^2 + 1)} \implies -\frac{31}{4} = c
-8,389
\left(-8\right) (-9) = 72
16,615
1/2 + \dfrac16 + 1/22 + \frac{1}{66} = 8/11
-12,798
22 = 7 + 6 + 9
14,178
\frac{x}{g} = g \times x = x \times g = x/g
-3,860
\dfrac{1}{42}\cdot 12\cdot s^3/s = \frac{12\cdot s^3}{s\cdot 42}
-11,966
\frac{1}{20} = \dfrac{p}{20*\pi}*20*\pi = p
-9,875
0.01\cdot (-100) = -\frac{1}{100}\cdot 100 = -1^{-1}
-17,142
2 = 2\cdot 2\cdot s + 2\cdot \left(-6\right) = 4\cdot s - 12 = 4\cdot s + 12\cdot (-1)
10,472
\frac18 \cdot 3 \cdot \dfrac{2}{3} = 1/4
-18,335
\tfrac{1}{n^2 + 6\cdot n}\cdot (60\cdot \left(-1\right) + n^2 - n\cdot 4) = \frac{(10\cdot \left(-1\right) + n)\cdot (6 + n)}{n\cdot (6 + n)}
13,217
\frac12 + \frac12 + 1/2 + \frac12 + 1/2 = 5/2
26,786
\frac{1}{3 + (-1)}*(9*(-1) + 12^3 + (-1)) = 859
39,804
5 = |50 \cdot (-1) + 55|
27,427
-j \cdot 15^{1 / 2} + 5 = 5 - (-15)^{\frac{1}{2}}
4,113
\dfrac{1}{2}*(1/b + \frac1a) = (a + b)/(a*b*2)
32,778
-i + k = k - 2*i + i
11,921
G + G + H = H + G + G
17,211
\left(b + c = b \cdot c \Leftrightarrow c \cdot b - b - c + 1 = 1\right) \implies 1 = \left(b + \left(-1\right)\right) \cdot \left((-1) + c\right)