id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
6,288 | \cos{x/2\cdot 2} = \cos{x} |
25,858 | x^4 + \mu^4 = -2 (x \mu)^2 + \left(x^2 + \mu^2\right)^2 |
-2,298 | 2/11 = -\frac{1}{11} + \tfrac{1}{11} \cdot 3 |
10,623 | (\tfrac12 + i)^2 = (-i + \frac12)^2 + 2 \cdot i |
24,409 | z^3 + 2 = z \cdot z \cdot z + 8 = (z + 2)\cdot (z^2 - 2\cdot z + 4) |
2,701 | \left(3 \cdot x = \dfrac{1}{3} \cdot (x + y + z) \implies y + z = 8 \cdot x\right) \implies 4 \cdot x = \frac{1}{2} \cdot (z + y) |
24,682 | r + r^2 = (r + 1) \cdot r |
110 | (d_1 + d_2)^2 = d_1 \cdot d_1 + d_2^2 + 2\cdot d_1\cdot d_2 |
-4,662 | (2 + \omega) (\omega + 2 (-1)) = \omega^2 + 4 (-1) |
-4,541 | \dfrac{1}{(-1) + y^2}(-y + 5(-1)) = \frac{2}{1 + y} - \dfrac{3}{y + (-1)} |
-2,678 | -2 \cdot \sqrt{5} + \sqrt{5} \cdot 3 = -\sqrt{5} \cdot \sqrt{4} + \sqrt{5} \cdot \sqrt{9} |
-3,646 | \tfrac{9}{q^3} 10^{-1} = \frac{9}{q^2 q*10} |
-12,026 | \frac{1}{18} = \frac{r}{6\pi}\cdot 6\pi = r |
40,455 | \dfrac19 \cdot 4 = \frac{4}{9} |
-6,811 | 210 = 3*7*10 |
3,528 | (x + (-1))*(x + 2) = x^2 + 2*x - x + 2*\left(-1\right) = x * x + x + 2*(-1) = x^2 + x + 1 |
14,221 | \frac{1}{3 + 2\cdot \sqrt{2}} = 3 - \sqrt{2}\cdot 2 |
-30,552 | \frac{512}{64} = \frac{64}{8} = \frac{1}{1}8 = 8 |
2,756 | 4 \cdot 3^{1/2} + 7 = (7^2 + (-1))^{1/2} + 7 |
18,496 | F/A = \frac{1}{A \cdot 1/F} |
8,224 | 1/81 = \frac{1}{6 * 6^2}*(5/6 + 1 + 5/6) |
2,172 | \cos(2) \lt 1 - 2^2/2! + 2^4/4! = -\dfrac{1}{3} \lt 0 |
24,123 | -2e^{-x \cdot 2} = d/dx e^{-x \cdot 2} |
27,439 | x + x + ... + x = x + 1 + (x + 2) \cdot ... + 2 \cdot x |
-3,042 | -\sqrt{8} + \sqrt{50} = -\sqrt{4 \cdot 2} + \sqrt{25 \cdot 2} |
-26,455 | 9\cdot z \cdot z + 4 - 12\cdot z = (2 - 3\cdot z)^2 |
26,708 | 2^{\tfrac{3}{4}} = \left(2^3\right)^{\frac14} |
16,895 | M^{1/i + (-1)} = M^{(1 - i)/i} = (M^{1 - i})^{1/i} |
47,858 | 1\cdot 4\cdot 4\cdot 4 = 64 |
8,786 | \frac1z \cdot x = x/z |
-2,176 | \dfrac{7}{14} = -\frac{2}{14} + \dfrac{1}{14} \cdot 9 |
21,433 | (6^3 + 10^3 + 2^3)=1224 |
1,778 | 1/(x h) = 1/(h x) = 1/(h x) |
9,524 | -\frac{1}{(-1) + x} = \frac{1}{-x + 1} |
-17,460 | 53 \cdot (-1) + 82 = 29 |
14,974 | x^3 + 2x^2 + 2x +1 = (x+1)(x^2+x+1) \in \langle x+1, x^2+x+1 \rangle |
13,004 | 3 \cdot x^2 + 3 \cdot y^2 + 3 \cdot z^2 - 2 \cdot y \cdot x - 2 \cdot x \cdot z - 2 \cdot y \cdot z = (-x + y + z)^2 + (z + x - y)^2 + (x + y - z)^2 |
27,060 | x^6+1=(x^3+1)^2=(x+1)^2(x^2+x+1)^2 |
10,644 | (d + f)/g = (-1) + \left(g + f + d\right)/g |
-21,009 | \frac{1}{q*4 + 24}*(-7*q + 42*(-1)) = -7/4*\dfrac{q + 6}{q + 6} |
31,956 | (a \cdot a + 1) \cdot (1 - a \cdot 3^{1/2} + a^2) \cdot (1 + a \cdot 3^{\dfrac12} + a^2) = a^6 + 1 |
16,000 | (\left(-1\right) + 5\cdot l)\cdot l/2 = 2 + 7 + 12 + 17 + \ldots + 5\cdot l + 3\cdot \left(-1\right) |
22,623 | 0 = x^2 + 2 \cdot i \cdot x + 2 \cdot (-1) = (x + i) \cdot (x + i) + (-1) = \left(x + \left(-1\right) + i\right) \cdot (x + 1 + i) |
16,840 | (-p^2 + p^3)/2 = p^2 \frac{1}{2}((-1) + p) |
-7,145 | 5/52 = 3/13\times \frac{1}{12}\times 5 |
14,430 | z z + \epsilon^2 + 2 \epsilon z = (\epsilon + z)^2 |
-1,392 | \phantom{ \dfrac{9}{2} \times - \dfrac{5}{2}} = \dfrac{9 \times -5}{2 \times 2} = \dfrac{-45}{4} |
3,484 | x\cdot A_1\cdot A_2 = x\cdot A_2\cdot A_1 |
20,083 | -z_1 = 16 \cdot (-z_1 + z_2) \Rightarrow z_1 \cdot 15 = z_2 \cdot 16 |
16,334 | k^2 \cdot 4 = (k \cdot 2)^2 |
40,330 | l \cdot \int_0^\infty \frac{z^{l + 2 \cdot \left(-1\right)}}{(z^2 + 2^2) \cdot (4^2 + z^2) \cdot \dots \cdot (l^2 + z^2)}\,dz = \int_0^\infty (\sin(z)/z)^l\,dz |
10,938 | (x + 1) * (x + 1) = (x + 4 + 3*\left(-1\right))^2 = (x + 4)^2 - 6*(x + 4) + 9 |
7,398 | 2^6 \cdot (2^7 + (-1)) = 8128 |
-20,239 | \frac11 \times 1 = \frac{q \times 3 + (-1)}{(-1) + 3 \times q} |
5,099 | aBz = zB a |
24,988 | 1 + \frac{1}{\left(1 + x\right) * \left(1 + x\right)} = \frac{(x + 1)^2 + 1}{(1 + x)^2} |
11,160 | a^{m + 2\cdot (-1)}\cdot a^2 = a^{m + 2\cdot (-1) + 2} = a^m |
17,501 | \frac{E_1}{E_1 \cap E_2} = \dfrac{1}{E_2} \cdot E_1 = \dfrac{1}{E_2} \cdot (E_2 + E_1) |
7,013 | (k^2 + \tfrac{k}{2} + 1)^2 = k^4 + k^3 + 9/4 k^2 + k + 1 > k^4 + k^3 + k^2 + k + 1 |
17,255 | \binom{n}{n} + \binom{n+1}{n} = \binom{n+2}{n+1} |
36,514 | \frac{1}{2}5 = 2.5 |
4,280 | \frac{1}{2}*(\cos(-b + f) + \cos(b + f)) = \cos(b)*\cos(f) |
14,874 | a * a*4x * x * x = \frac{\partial}{\partial x} (a^2 x^4) |
8,564 | \dfrac{y\cdot z}{y + z}\cdot 1 = \dfrac{1}{1/z + 1/y} |
-20,518 | 20 p/(90 p) = \frac{1}{9}2*10 p/(10 p) |
21,582 | C_2 * C_2^2 + C_1^3 = (C_1^2 - C_2*C_1 + C_2 * C_2)*(C_2 + C_1) |
-13,965 | (7 + 10 - 5*9)*9 = \left(7 + 10 + 45 (-1)\right)*9 = (7 - 35)*9 = (7 + 35 (-1))*9 = (-28)*9 = (-28)*9 = -252 |
17,896 | 24*(-1) + x^3 - x = 0 \Rightarrow x = 3 |
-1,404 | -5/3\cdot 4/5 = \left((-1)\cdot 5\cdot \frac13\right)/(1/4\cdot 5) |
26,844 | T^w \cdot T^u = T^{w + u} |
1,041 | (b^k)^{12} = 1 \Rightarrow b^k |
-3,865 | \frac{1/2}{x^3}3 = \dfrac{3}{2x^3} |
16,504 | (E_2 + E_1)^2 = E_1^2 + E_1*E_2 + E_2*E_1 + E_2^2 |
40,253 | \dfrac{4}{52} = 17/221 |
44,047 | 1 \cdot 1^2 + 6 \cdot 1^2 + 11 + 6 = 24 = 3 \cdot 8 |
40,761 | S_k + S_k = S_k |
713 | {n \choose 1} \cdot {x \choose 1} + {x \choose 2} = -{n \choose 2} + {n + x \choose 2} |
2,531 | D'*\left(D + A'*\beta\right) = D*D' + A'*\beta*D' |
-20,981 | \frac{10\cdot 10^{-1}}{p + 10} = \frac{10}{p\cdot 10 + 100} |
12,730 | g \cdot \lambda \cdot d = g \cdot (-\lambda - d) = -g - -\lambda - d = -g + \lambda + d |
10,908 | \pi/4 + \pi/12 = \pi/3 |
3,932 | c + 4^2/2 = -\frac{1}{2\cdot (1^2 + 1)} \implies -\frac{31}{4} = c |
-8,389 | \left(-8\right) (-9) = 72 |
16,615 | 1/2 + \dfrac16 + 1/22 + \frac{1}{66} = 8/11 |
-12,798 | 22 = 7 + 6 + 9 |
14,178 | \frac{x}{g} = g \times x = x \times g = x/g |
-3,860 | \dfrac{1}{42}\cdot 12\cdot s^3/s = \frac{12\cdot s^3}{s\cdot 42} |
-11,966 | \frac{1}{20} = \dfrac{p}{20*\pi}*20*\pi = p |
-9,875 | 0.01\cdot (-100) = -\frac{1}{100}\cdot 100 = -1^{-1} |
-17,142 | 2 = 2\cdot 2\cdot s + 2\cdot \left(-6\right) = 4\cdot s - 12 = 4\cdot s + 12\cdot (-1) |
10,472 | \frac18 \cdot 3 \cdot \dfrac{2}{3} = 1/4 |
-18,335 | \tfrac{1}{n^2 + 6\cdot n}\cdot (60\cdot \left(-1\right) + n^2 - n\cdot 4) = \frac{(10\cdot \left(-1\right) + n)\cdot (6 + n)}{n\cdot (6 + n)} |
13,217 | \frac12 + \frac12 + 1/2 + \frac12 + 1/2 = 5/2 |
26,786 | \frac{1}{3 + (-1)}*(9*(-1) + 12^3 + (-1)) = 859 |
39,804 | 5 = |50 \cdot (-1) + 55| |
27,427 | -j \cdot 15^{1 / 2} + 5 = 5 - (-15)^{\frac{1}{2}} |
4,113 | \dfrac{1}{2}*(1/b + \frac1a) = (a + b)/(a*b*2) |
32,778 | -i + k = k - 2*i + i |
11,921 | G + G + H = H + G + G |
17,211 | \left(b + c = b \cdot c \Leftrightarrow c \cdot b - b - c + 1 = 1\right) \implies 1 = \left(b + \left(-1\right)\right) \cdot \left((-1) + c\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.