id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-10,389 | \frac{100}{60\cdot r + 240\cdot (-1)} = \dfrac{1}{12\cdot (-1) + 3\cdot r}\cdot 5\cdot 20/20 |
10,812 | (x + x^2 + \dots + x^{15}) \cdot (x + x^2 + \dots + x^{15}) = \frac{x \cdot x}{\left(1 - x\right)^2} |
-15,529 | \frac{1}{r\cdot \frac{1}{\frac{1}{x^4}\cdot r^8}} = \frac{1}{\frac{x^4}{r^8}\cdot r} |
27,143 | 1 + 5 + \dots + 5^n + 5^{n + 1} = \dfrac14 \cdot (5^{n + 1} + (-1)) + 5^{n + 1} |
28,056 | (-1) + \left\lfloor{y}\right\rfloor = \left\lfloor{(-1) + y}\right\rfloor |
19,698 | \sin(-π/3) = \sin(4 \cdot π/3) |
21,218 | \left|{x\times J}\right| = \left|{x\times J}\right| |
1,316 | 54860400 = 10!\cdot \tfrac{2177}{144} |
27,420 | (f*9 + 80*a)^2 - (9*a + f)^2*80 = -80*a^2 + f * f |
6,542 | (1+ 1)^n= 2^n |
1,526 | \tfrac{4}{2\cdot j} = -2\cdot j = -2\cdot e^{\frac{j\cdot \pi}{2}} = 2\cdot e^{((-1)\cdot j\cdot \pi)/2} |
28,303 | \dfrac{1}{5000} = 2/10000 |
16,272 | (2n + 1) (n*2)! (n*2 + 2) = (n*2 + 2)! |
18,858 | ( r', i')\cdot ( r, i) \coloneqq ( r\cdot r', i'\cdot r + r'\cdot i) |
10,331 | -L + a_n = (\sqrt{a_n} + \sqrt{L}) \cdot \left(-\sqrt{L} + \sqrt{a_n}\right) |
8,839 | W^2 + 2\cdot W + 1 = (1 + W)^2 |
15,856 | \frac{\mathrm{d}}{\mathrm{d}\gamma} \tan{\gamma} = \sec^2{\gamma} = 1 + \tan^2{\gamma} |
-14,122 | \dfrac{ 16 }{ 10 + 6 } = \dfrac{ 16 }{ (16) } = \dfrac{ 16 }{ 16 } = 1 |
11,204 | ln(2z)=ln(2)+ln(z) |
-10,407 | -\frac{2*(-1) + n}{3 + n}*3/3 = -\tfrac{1}{9 + 3*n}*(6*(-1) + 3*n) |
-4,568 | (4 + y)\cdot \left(y + 5\cdot (-1)\right) = y^2 - y + 20\cdot \left(-1\right) |
1,400 | \frac{1}{-2}(5(-1) + 0) (2 + 0) = 0 + 0 + B\Longrightarrow 5 = B |
6,784 | r g = g r g = g r |
25,687 | 3/5 = 6/10 \geq 5/10 |
2,195 | \ln(2) = \frac12 + \frac{1}{6} + \frac{1}{30} + \frac{1}{56} + \dotsm \leq 1 + \frac14 + 1/25 + 1/49 + \dotsm |
3,364 | x = \dfrac{x^2\cdot 3}{x\cdot 3} |
3,470 | \dfrac{1}{3} 5 - \frac19 6 = 5/3 - 2/3 = \dfrac33 = 1 |
1,403 | 1/(4*y) + y = (y^2 + 1/4)/y |
2,119 | \cos\left(\pi*2014/12 - 2*\pi*83\right) = \cos(\dfrac{\pi*2014}{12}) |
2,167 | -s^2 + (1 + s)^2 = 1 + 2 \cdot s |
12,178 | 6 + \sqrt{3} = \left(1 + 2 \cdot \sqrt{3}\right) \cdot \sqrt{3} |
26,324 | \left(x\times c\right)^3 = c^3\times x^3 |
37,209 | 0.999 \cdot \dots = \frac{9 \cdot \frac{1}{10}}{1 - \frac{1}{10}} = 1 |
-26,571 | 320 (-1) + x^2\cdot 5 = 5(x^2 + 64 (-1)) |
54,769 | 21^3 = 9261 |
150 | \left(z_1,z_2 \geq 0\Longrightarrow z_2*2 = 2z_1\right)\Longrightarrow z_2 = z_1 |
-20,003 | \dfrac44 \cdot (z + 9)/4 = (4 \cdot z + 36)/16 |
1,987 | \frac{1}{n}\cdot (n + (-1)) = -1/n + 1 |
-9,566 | 100\% = \dfrac{100}{100} = 1^{-1} |
30,862 | x\times n + p\times x = \left(n + p\right)\times x |
5,104 | a + b\omega + h\omega * \omega = a + b\omega - h*(1 + \omega) = a - h + \left(b - h\right) \omega |
28,244 | (k + 1)! = 1\cdot 2 \dots k\cdot (k + 1) = k! \left(k + 1\right) |
9,329 | \int \frac1x\,dx = (\ln(x))! = \ln(x) |
-18,572 | -\frac94 = -\frac14 \cdot 9 |
9,633 | 4 + (5^m + (-1))\cdot 5 = (-1) + 5^{m + 1} |
2,351 | x + y + \lambda = y + \lambda + x |
23,015 | \frac{6!}{6^6} = \dfrac{5}{324} |
31,490 | \frac{\mathrm{d}}{\mathrm{d}y} \left(-\csc(y)\right) = \csc(y)*\cot(y) |
16,758 | (2\cdot k + 1) \cdot (2\cdot k + 1) = 1 + (k^2 + k)\cdot 4 |
6,625 | \dfrac{2\cdot l!}{(l + 3)!} = \dfrac{2}{(l + 1)\cdot (l + 2)\cdot \left(l + 3\right)} \leq \dfrac{2}{l^2} |
-1,812 | \pi \cdot \frac76 = \pi \cdot 7/6 + 0 |
17,125 | {3 \choose 2} \cdot {5 \choose 2} = 3 \cdot 10 = 30 |
16,523 | \overline{E} \cap (X \cap \overline{G}) = X \cap (\overline{E} \cap \overline{G}) = X \cap \overline{E \cup G} |
17,771 | 4/5 \cdot \frac15 \cdot 4 \cdot 25 = 16 |
-28,990 | 4 \cdot \pi/20 = \frac{1}{5} \cdot \pi |
-10,500 | -8/(t*2)*2/2 = -\frac{1}{4*t}*16 |
-20,966 | \dfrac{t*10}{(-12) t} = -5/6 \frac{1}{t*\left(-2\right)}((-2) t) |
21,460 | x^4 + 1 = x^4 - 2x^2 + 1 - -2x \cdot x = (x^2 + (-1))^2 - x \cdot x = (x^2 + \left(-1\right) + x) (x^2 + (-1) - x) |
-6,732 | 2/100 + 2/10 = \frac{2}{100} + \frac{20}{100} |
-3,258 | \sqrt{7}*5 = \sqrt{7}*(4 + (-1) + 2) |
2,117 | -((-1) + k) + n + 1 = 2 + n - k |
4,795 | (l + 10\cdot (-1))/2 = -1.3 \Rightarrow l = 7.4 |
30,925 | \frac{1}{5 \cdot 24} \cdot \left((-1) + 24^2 + 5 \cdot 5\right) = 5 |
-5,850 | \frac{1}{(x + 8) (x + 9)} = \tfrac{1}{72 + x^2 + x*17} |
-20,080 | 6/6\cdot \left(-\frac{9}{n + 9\cdot (-1)}\right) = -\frac{54}{54\cdot (-1) + 6\cdot n} |
-15,278 | \frac{k\times x^4}{\frac{1}{k^3}\times x \times x} = \frac{k\times x^4}{x \times x\times \frac{1}{k^3}} |
71 | \left\{x, C\right\} \implies C \cup x = C |
27,478 | 1 = \dfrac{\left(2*0\right)!}{0!^2} |
31,610 | \left( 0, 2\right) + E*2 = ( 2, 0) + E*2 = ( 2, 2) + E*2 = ( 0, 0) + E*2 = E*2 |
-2,777 | 10^{\frac{1}{2}}*(2 + 4 + (-1)) = 10^{1 / 2}*5 |
6,776 | x^4 + 1 = 7 + \left(3 + x^2 - x\right)\cdot (x + (-1))\cdot (x + 2) - 5\cdot x |
14,637 | \frac{1}{(-1) + |y|^m} = \frac{1}{\left(|y|^m + (-1)\right)\cdot |y|^m} + \frac{1}{|y|^m} |
-18,671 | (-1)*0.3085 + 0.7734 = 0.4649 |
126 | \cos(\theta/2) = \frac{\sin\left(\theta\right)}{2 \cdot \sin\left(\theta/2\right)} |
1,713 | e^{-N \cdot N} \cdot \frac{\mathrm{d}z}{\mathrm{d}N} - N \cdot z \cdot e^{-N^2} \cdot 2 = \frac{\partial}{\partial N} (e^{-N^2} \cdot z) |
15,783 | \sqrt{x} - \frac{1}{\sqrt{x}} = (x + \left(-1\right))/(\sqrt{x}) |
5,510 | \tfrac{1}{2^{n + (-1)}} = \frac{1}{2^n}\cdot \left(0\cdot (-1) + 2\right) |
4,940 | 56 = 312 + 256 \cdot (-1) |
-5,054 | 5.8/10 = 5.8/10 \times 10 \times 10 = 5.8 \times 10^1 |
39,744 | 0*1/2 = 0 |
-11,538 | 6 + 9(-1) - 15 i = -3 - i*15 |
2,006 | \frac{x^k + \left(-1\right)}{x + (-1)} = \frac{1}{x + (-1)}*(x + (-1))*(1 + x + \cdots + x^{k + (-1)}) = 1 + x + \cdots + x^{k + (-1)} |
24,526 | x^4 + 1 = (x^2 + x*2^{1 / 2} + 1)*(1 + x^2 - 2^{1 / 2}*x) |
23,588 | \sqrt{7}/2\times 2 = \sqrt{7} |
35,283 | \cos(\pi/8) = \cos(\frac{1/4}{2} \cdot \pi) |
-1,150 | 8/9\cdot 3/2 = \frac{8\cdot 3}{9\cdot 2} = 24/18 |
30,420 | (\dfrac{1}{4}\times (w^2 + h^2))^{\dfrac{1}{2}} = \frac{1}{2}\times (h \times h + w^2)^{1 / 2} |
-10,284 | -\frac{32}{k \cdot 24} = -\frac{1}{6 \cdot k} \cdot 8 \cdot \frac{4}{4} |
-5,641 | \dfrac{15q - 60 + 25q - 200 + 45}{15q^2 - 180q + 480} = \dfrac{40q - 215}{15q^2 - 180q + 480} |
10,268 | -\sin{A} \cdot \sin{B} + \cos{A} \cdot \cos{B} = \cos(A + B) |
5,393 | 540 = {2 \choose 1} \cdot {10 \choose 6} + {10 \choose 7} \cdot {2 \choose 0} |
20,605 | (x - E)^2 = x - 2\cdot E + E^2 = x - E |
-11,079 | (x + c)^2 = (x + c) (x + c) = x^2 + 2c x + c^2 |
11,971 | \frac{d}{du} (\frac{e^u}{e^u}) = 0 = e^u - e^{2u} |
-6,176 | \frac{1}{15 \cdot \left(-1\right) + y^2 + 2 \cdot y} \cdot 4 = \frac{4}{(y + 3 \cdot (-1)) \cdot (y + 5)} |
-20,781 | \frac{1}{6x + 10 (-1)}1 = \frac{6}{36 x + 60 (-1)} |
-7,592 | \tfrac{\left(5 \cdot i + 2\right) \cdot \left(11 + i \cdot 16\right)}{(2 + 5 \cdot i) \cdot (2 - 5 \cdot i)} = \frac{1}{2^2 - (-i \cdot 5)^2} \cdot (2 + i \cdot 5) \cdot (11 + 16 \cdot i) |
43,319 | 706 = 2 \times 353 |
649 | -c + (x + j)^2 = -c + x^2 + j \cdot x \cdot 2 + j^2 |
23,968 | sr := sr |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.