id
int64
-30,985
55.9k
text
stringlengths
5
437k
-10,389
\frac{100}{60\cdot r + 240\cdot (-1)} = \dfrac{1}{12\cdot (-1) + 3\cdot r}\cdot 5\cdot 20/20
10,812
(x + x^2 + \dots + x^{15}) \cdot (x + x^2 + \dots + x^{15}) = \frac{x \cdot x}{\left(1 - x\right)^2}
-15,529
\frac{1}{r\cdot \frac{1}{\frac{1}{x^4}\cdot r^8}} = \frac{1}{\frac{x^4}{r^8}\cdot r}
27,143
1 + 5 + \dots + 5^n + 5^{n + 1} = \dfrac14 \cdot (5^{n + 1} + (-1)) + 5^{n + 1}
28,056
(-1) + \left\lfloor{y}\right\rfloor = \left\lfloor{(-1) + y}\right\rfloor
19,698
\sin(-π/3) = \sin(4 \cdot π/3)
21,218
\left|{x\times J}\right| = \left|{x\times J}\right|
1,316
54860400 = 10!\cdot \tfrac{2177}{144}
27,420
(f*9 + 80*a)^2 - (9*a + f)^2*80 = -80*a^2 + f * f
6,542
(1+ 1)^n= 2^n
1,526
\tfrac{4}{2\cdot j} = -2\cdot j = -2\cdot e^{\frac{j\cdot \pi}{2}} = 2\cdot e^{((-1)\cdot j\cdot \pi)/2}
28,303
\dfrac{1}{5000} = 2/10000
16,272
(2n + 1) (n*2)! (n*2 + 2) = (n*2 + 2)!
18,858
( r', i')\cdot ( r, i) \coloneqq ( r\cdot r', i'\cdot r + r'\cdot i)
10,331
-L + a_n = (\sqrt{a_n} + \sqrt{L}) \cdot \left(-\sqrt{L} + \sqrt{a_n}\right)
8,839
W^2 + 2\cdot W + 1 = (1 + W)^2
15,856
\frac{\mathrm{d}}{\mathrm{d}\gamma} \tan{\gamma} = \sec^2{\gamma} = 1 + \tan^2{\gamma}
-14,122
\dfrac{ 16 }{ 10 + 6 } = \dfrac{ 16 }{ (16) } = \dfrac{ 16 }{ 16 } = 1
11,204
ln(2z)=ln(2)+ln(z)
-10,407
-\frac{2*(-1) + n}{3 + n}*3/3 = -\tfrac{1}{9 + 3*n}*(6*(-1) + 3*n)
-4,568
(4 + y)\cdot \left(y + 5\cdot (-1)\right) = y^2 - y + 20\cdot \left(-1\right)
1,400
\frac{1}{-2}(5(-1) + 0) (2 + 0) = 0 + 0 + B\Longrightarrow 5 = B
6,784
r g = g r g = g r
25,687
3/5 = 6/10 \geq 5/10
2,195
\ln(2) = \frac12 + \frac{1}{6} + \frac{1}{30} + \frac{1}{56} + \dotsm \leq 1 + \frac14 + 1/25 + 1/49 + \dotsm
3,364
x = \dfrac{x^2\cdot 3}{x\cdot 3}
3,470
\dfrac{1}{3} 5 - \frac19 6 = 5/3 - 2/3 = \dfrac33 = 1
1,403
1/(4*y) + y = (y^2 + 1/4)/y
2,119
\cos\left(\pi*2014/12 - 2*\pi*83\right) = \cos(\dfrac{\pi*2014}{12})
2,167
-s^2 + (1 + s)^2 = 1 + 2 \cdot s
12,178
6 + \sqrt{3} = \left(1 + 2 \cdot \sqrt{3}\right) \cdot \sqrt{3}
26,324
\left(x\times c\right)^3 = c^3\times x^3
37,209
0.999 \cdot \dots = \frac{9 \cdot \frac{1}{10}}{1 - \frac{1}{10}} = 1
-26,571
320 (-1) + x^2\cdot 5 = 5(x^2 + 64 (-1))
54,769
21^3 = 9261
150
\left(z_1,z_2 \geq 0\Longrightarrow z_2*2 = 2z_1\right)\Longrightarrow z_2 = z_1
-20,003
\dfrac44 \cdot (z + 9)/4 = (4 \cdot z + 36)/16
1,987
\frac{1}{n}\cdot (n + (-1)) = -1/n + 1
-9,566
100\% = \dfrac{100}{100} = 1^{-1}
30,862
x\times n + p\times x = \left(n + p\right)\times x
5,104
a + b\omega + h\omega * \omega = a + b\omega - h*(1 + \omega) = a - h + \left(b - h\right) \omega
28,244
(k + 1)! = 1\cdot 2 \dots k\cdot (k + 1) = k! \left(k + 1\right)
9,329
\int \frac1x\,dx = (\ln(x))! = \ln(x)
-18,572
-\frac94 = -\frac14 \cdot 9
9,633
4 + (5^m + (-1))\cdot 5 = (-1) + 5^{m + 1}
2,351
x + y + \lambda = y + \lambda + x
23,015
\frac{6!}{6^6} = \dfrac{5}{324}
31,490
\frac{\mathrm{d}}{\mathrm{d}y} \left(-\csc(y)\right) = \csc(y)*\cot(y)
16,758
(2\cdot k + 1) \cdot (2\cdot k + 1) = 1 + (k^2 + k)\cdot 4
6,625
\dfrac{2\cdot l!}{(l + 3)!} = \dfrac{2}{(l + 1)\cdot (l + 2)\cdot \left(l + 3\right)} \leq \dfrac{2}{l^2}
-1,812
\pi \cdot \frac76 = \pi \cdot 7/6 + 0
17,125
{3 \choose 2} \cdot {5 \choose 2} = 3 \cdot 10 = 30
16,523
\overline{E} \cap (X \cap \overline{G}) = X \cap (\overline{E} \cap \overline{G}) = X \cap \overline{E \cup G}
17,771
4/5 \cdot \frac15 \cdot 4 \cdot 25 = 16
-28,990
4 \cdot \pi/20 = \frac{1}{5} \cdot \pi
-10,500
-8/(t*2)*2/2 = -\frac{1}{4*t}*16
-20,966
\dfrac{t*10}{(-12) t} = -5/6 \frac{1}{t*\left(-2\right)}((-2) t)
21,460
x^4 + 1 = x^4 - 2x^2 + 1 - -2x \cdot x = (x^2 + (-1))^2 - x \cdot x = (x^2 + \left(-1\right) + x) (x^2 + (-1) - x)
-6,732
2/100 + 2/10 = \frac{2}{100} + \frac{20}{100}
-3,258
\sqrt{7}*5 = \sqrt{7}*(4 + (-1) + 2)
2,117
-((-1) + k) + n + 1 = 2 + n - k
4,795
(l + 10\cdot (-1))/2 = -1.3 \Rightarrow l = 7.4
30,925
\frac{1}{5 \cdot 24} \cdot \left((-1) + 24^2 + 5 \cdot 5\right) = 5
-5,850
\frac{1}{(x + 8) (x + 9)} = \tfrac{1}{72 + x^2 + x*17}
-20,080
6/6\cdot \left(-\frac{9}{n + 9\cdot (-1)}\right) = -\frac{54}{54\cdot (-1) + 6\cdot n}
-15,278
\frac{k\times x^4}{\frac{1}{k^3}\times x \times x} = \frac{k\times x^4}{x \times x\times \frac{1}{k^3}}
71
\left\{x, C\right\} \implies C \cup x = C
27,478
1 = \dfrac{\left(2*0\right)!}{0!^2}
31,610
\left( 0, 2\right) + E*2 = ( 2, 0) + E*2 = ( 2, 2) + E*2 = ( 0, 0) + E*2 = E*2
-2,777
10^{\frac{1}{2}}*(2 + 4 + (-1)) = 10^{1 / 2}*5
6,776
x^4 + 1 = 7 + \left(3 + x^2 - x\right)\cdot (x + (-1))\cdot (x + 2) - 5\cdot x
14,637
\frac{1}{(-1) + |y|^m} = \frac{1}{\left(|y|^m + (-1)\right)\cdot |y|^m} + \frac{1}{|y|^m}
-18,671
(-1)*0.3085 + 0.7734 = 0.4649
126
\cos(\theta/2) = \frac{\sin\left(\theta\right)}{2 \cdot \sin\left(\theta/2\right)}
1,713
e^{-N \cdot N} \cdot \frac{\mathrm{d}z}{\mathrm{d}N} - N \cdot z \cdot e^{-N^2} \cdot 2 = \frac{\partial}{\partial N} (e^{-N^2} \cdot z)
15,783
\sqrt{x} - \frac{1}{\sqrt{x}} = (x + \left(-1\right))/(\sqrt{x})
5,510
\tfrac{1}{2^{n + (-1)}} = \frac{1}{2^n}\cdot \left(0\cdot (-1) + 2\right)
4,940
56 = 312 + 256 \cdot (-1)
-5,054
5.8/10 = 5.8/10 \times 10 \times 10 = 5.8 \times 10^1
39,744
0*1/2 = 0
-11,538
6 + 9(-1) - 15 i = -3 - i*15
2,006
\frac{x^k + \left(-1\right)}{x + (-1)} = \frac{1}{x + (-1)}*(x + (-1))*(1 + x + \cdots + x^{k + (-1)}) = 1 + x + \cdots + x^{k + (-1)}
24,526
x^4 + 1 = (x^2 + x*2^{1 / 2} + 1)*(1 + x^2 - 2^{1 / 2}*x)
23,588
\sqrt{7}/2\times 2 = \sqrt{7}
35,283
\cos(\pi/8) = \cos(\frac{1/4}{2} \cdot \pi)
-1,150
8/9\cdot 3/2 = \frac{8\cdot 3}{9\cdot 2} = 24/18
30,420
(\dfrac{1}{4}\times (w^2 + h^2))^{\dfrac{1}{2}} = \frac{1}{2}\times (h \times h + w^2)^{1 / 2}
-10,284
-\frac{32}{k \cdot 24} = -\frac{1}{6 \cdot k} \cdot 8 \cdot \frac{4}{4}
-5,641
\dfrac{15q - 60 + 25q - 200 + 45}{15q^2 - 180q + 480} = \dfrac{40q - 215}{15q^2 - 180q + 480}
10,268
-\sin{A} \cdot \sin{B} + \cos{A} \cdot \cos{B} = \cos(A + B)
5,393
540 = {2 \choose 1} \cdot {10 \choose 6} + {10 \choose 7} \cdot {2 \choose 0}
20,605
(x - E)^2 = x - 2\cdot E + E^2 = x - E
-11,079
(x + c)^2 = (x + c) (x + c) = x^2 + 2c x + c^2
11,971
\frac{d}{du} (\frac{e^u}{e^u}) = 0 = e^u - e^{2u}
-6,176
\frac{1}{15 \cdot \left(-1\right) + y^2 + 2 \cdot y} \cdot 4 = \frac{4}{(y + 3 \cdot (-1)) \cdot (y + 5)}
-20,781
\frac{1}{6x + 10 (-1)}1 = \frac{6}{36 x + 60 (-1)}
-7,592
\tfrac{\left(5 \cdot i + 2\right) \cdot \left(11 + i \cdot 16\right)}{(2 + 5 \cdot i) \cdot (2 - 5 \cdot i)} = \frac{1}{2^2 - (-i \cdot 5)^2} \cdot (2 + i \cdot 5) \cdot (11 + 16 \cdot i)
43,319
706 = 2 \times 353
649
-c + (x + j)^2 = -c + x^2 + j \cdot x \cdot 2 + j^2
23,968
sr := sr