id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
14,437 | \sum_{x=1}^j (d_x + e*h_x) = \sum_{x=1}^j d_x + (\sum_{x=1}^j h_x)*e |
22,807 | \arctan{0} = \dfrac{1}{1 + 0^2}0 |
7,121 | |y^3| = |y|^2 \implies |y| = 1 |
10,733 | \dfrac{1}{1 - 1 - r} = 1/r |
19,684 | \frac121 = \frac12 |
-4,950 | 1.11\cdot 10 = 1.11\cdot 10/100 = 1.11/10 |
38,116 | \dfrac{16}{2}9 = 72 |
41,842 | \frac16240 = 40 |
-199 | \frac{1}{2!}\cdot 5!/(\frac{1}{5!}\cdot 8!) = \frac{\dfrac{1}{3!\cdot (5 + 3\cdot (-1))!}}{\tfrac{1}{3!\cdot (3\cdot (-1) + 8)!}\cdot 8!}\cdot 5! |
39,721 | 1/2 = \frac12 \cdot |-1| |
-356 | \frac{4! \cdot \frac{1}{\left(3 \cdot \left(-1\right) + 4\right)! \cdot 3!}}{\frac{1}{(3 \cdot (-1) + 9)! \cdot 3!} \cdot 9!} = \dfrac{\frac{1}{1!}}{1/6! \cdot 9!} \cdot 4! |
18,749 | f*A = f*\frac{A*f}{f} |
22,185 | 2*x + 1 + x^2 - x^2 = 2*x + 1 |
18,919 | (1 + r)^3 - (1 - r) \left(1 - r\right)^2 = 2 (3 r + r^3) = 2 r*\left(3 + r^2\right) |
21,687 | A*9 = 9 rightarrow 1 = A |
12,229 | \frac{1}{\binom{38}{5}} = 5!\cdot 33!/38! = \dfrac{1}{501942} |
-7,044 | \frac{1}{11}\cdot 3\cdot \frac{3}{10} = \frac{1}{110}\cdot 9 |
21,665 | c^3 + g^3 = (g^2 + c^2 - cg) (g + c) |
12,565 | \dfrac{1}{t^{1/2}} \cdot t^3 = t^{5/2} |
46,791 | -1 + 2^{1 / 2} = -1 + 2^{1 / 2} |
-12,120 | \frac{5}{18} = s/(6*\pi)*6*\pi = s |
10,409 | \frac49 = \frac{1}{(-1) + \left(-1\right) \times 2 + (-1)^2 \times 12} \times \left((-1)^2 + 3\right) |
25,450 | \left(1 + t^4\right)\cdot (1 + t^2)\cdot ((-1) + t)\cdot (1 + t) = t^8 + \left(-1\right) |
-10,844 | \frac{1}{10}110 = 11 |
22,163 | 0 = x \cdot 6 + 3 \Rightarrow x = -1/2 |
5,994 | A^{\dfrac12} \cdot A^{\frac12} = A |
30,053 | m\cdot {n \choose m} = (n - m + 1)\cdot {n \choose m + (-1)} = n\cdot {n + (-1) \choose m + (-1)} |
-28,412 | x \times x - 6 \times x + 13 = x \times x - 6 \times x + 9 + 4 = (x + 3 \times \left(-1\right))^2 + 4 = (x \times (-3))^2 + 2^2 |
15,271 | e\cdot x^2 - 2\cdot x\cdot e \cdot e = 1 + e\cdot 4 + 9\cdot e^2 + \cdots + x^2\cdot e^{x + (-1)} |
27,569 | a \cdot b \cdot c = a \cdot b \cdot c = \dfrac{1}{b \cdot c} \cdot a |
-10,063 | \frac18 5 = 0.625 |
29,548 | (-1) + 2^{1092} = \left((-1) + 2^{273}\right)*\left(2^{546} + 1\right)*(2^{273} + 1) |
23,160 | \dfrac{1 + z^2}{z * z * z - z} = \frac{1}{z + (-1)} - 1/z + \frac{1}{1 + z} |
25,445 | a^3 + a^2\cdot h\cdot 3 + 3\cdot a\cdot h^2 + h^3 = (a + h)^3 |
33,367 | \sqrt{2}\cdot 8 + 3 = 7\cdot \sqrt{2} + 3 + \sqrt{2} |
-501 | π\cdot \frac{52}{3} - π\cdot 16 = \dfrac{4}{3}\cdot π |
24,158 | x^3 = x^2 \cdot x = x \cdot x = x |
25,345 | \left(1 + x\right)^2 = 1 + 2 \times x + x^2 \gt 1 + 2 \times x |
45,386 | 5 = \tfrac51 |
21,376 | 2\times 6^y = 2^{y + 1}\times 3^y |
3,828 | a \cdot b = c \implies c = a \cdot b,b = c \cdot a |
12,471 | d/dx \cos{\pi/x} = \tfrac{1}{x^2} \cdot \sin{\pi/x} \cdot \pi |
39,414 | 1 + 100 + 2 + 99 + 3 + 98 = 1 + 2 + 3 + 4 + \dotsm + 97 + 98 + 99 + 100 |
13,093 | \frac{d}{dx} (\frac{3}{x}) = 3 \cdot \left(-\frac{1}{x^2}\right) = -\frac{1}{x^2} \cdot 3 = -\frac{3}{x^2} |
-6,383 | \frac{6}{3 \cdot (8 \cdot \left(-1\right) + y) \cdot (y + 5)} = \frac{3}{3} \cdot \frac{2}{(5 + y) \cdot (y + 8 \cdot (-1))} |
-4,487 | (x + 4)*\left(x + 2*(-1)\right) = 8*\left(-1\right) + x^2 + x*2 |
20,484 | (-t + 1)*(\mathbb{Var}[Z] + 1/t) = (1 - t)/t + t*0 + (-t + 1)*\mathbb{Var}[Z] |
9,769 | x^2 - h \cdot h = h^2 - x \cdot x \cdot x - h \cdot h = x - h^2 |
9,400 | \dfrac{1}{y}((-1) + y) = -\frac{1}{y} + 1 |
-2,979 | \sqrt{7} = \left(2(-1) + 4 + (-1)\right) \sqrt{7} |
9,299 | w = \operatorname{P}(w) + w - \operatorname{P}\left(w\right) |
9,743 | l^2 = l! \frac{1}{\left((-1) + l\right)!}l |
15,714 | \cos(\arctan\left(z\right)) = \frac{1}{\sqrt{1 + z^2}} |
2,284 | \frac{\sin\left(y\cdot \pi/2\right)}{y} = \pi/2\cdot \frac{\sin(\frac{\pi}{2}\cdot y)}{\pi\cdot y\cdot 1/2} |
17,312 | 9/10 = 90/100 |
-19,428 | \tfrac{1/5}{7\cdot \tfrac{1}{5}}\cdot 7 = \dfrac{7}{5}\cdot \frac{1}{7}\cdot 5 |
-1,201 | -21/24 = \frac{(-21)\cdot \frac{1}{3}}{24\cdot 1/3} = -7/8 |
-17,725 | 19 + 2 \cdot \left(-1\right) = 17 |
-5,705 | \dfrac{1}{\left(2 (-1) + t\right) (t + 9 \left(-1\right))*8} 24 = 8/8*\dfrac{1}{(t + 9 (-1)) (t + 2 (-1))} 3 |
7,693 | x - -x^2 * x/3! + \tfrac{1}{2!}*x * x - -x^5/5! + x^4/4! - \dots = \sin{x} |
11,368 | \sin(\alpha)\cdot \cos\left(x\right) + \cos(\alpha)\cdot \sin(x) = \sin(x + \alpha) |
6,975 | n = 2n + (-1) - n + \left(-1\right) |
-10,327 | \tfrac{2 \cdot 1/2}{5 \cdot (-1) + 3 \cdot x} = \dfrac{2}{6 \cdot x + 10 \cdot (-1)} |
13,023 | \frac{1}{2!\cdot 2^2}4! = 3 |
3,958 | \frac{2}{24} = \dfrac{2}{2 + 7 + 15} |
39,684 | \sqrt{-1} = (-\sqrt{2} + \sqrt{2} + \sqrt{-2})/\left(\sqrt{2}\right) |
24,257 | 15/256 = 15 \cdot 1/16/16 |
28,348 | (3 w) (3 w) + (4 w)^2 = 25 w^2 |
38,304 | (2/3)^3 = \frac{1}{27}8 |
15,084 | \frac1a\cdot (h + x) = x/a + h/a |
-18,655 | \frac{1}{14}\cdot 25 = \frac{1}{28}\cdot 50 |
-5,734 | \frac{3}{5\cdot \left(p + 2\cdot \left(-1\right)\right)} = \frac{1}{5\cdot p + 10\cdot (-1)}\cdot 3 |
4,552 | 1 - \frac{7}{x^2} = \frac{1}{x^3} \times (x^3 - 7 \times x) |
24,708 | 1 - \sin^2{x} = \cos^2{x} = (1 + \cos{2\cdot x})/2 |
13,857 | 1 + x^2 - x*2 = \left((-1) + x\right)^2 |
20,066 | (z + (-1)) \left(y + (-1)\right) = z + (-1) + y + \left(-1\right) + (z + (-1)) (y + (-1)) = zy + (-1) |
11,427 | V[X+Y]=V[X]+V[Y] |
758 | \tfrac{1}{x^r} = x^{-r} |
12,281 | \cos\left(\tan^{-1}(y)\right) = \frac{1}{(1 + y \cdot y)^{1/2}} |
3,852 | (n + 1)^5 - n^5 = 1 + n^4*5 + n n^2*10 + n^2*10 + n*5 |
13,291 | \sum_{k=1}^l (1 + k)*((-1) + k) = \sum_{k=1}^l (1 + k)*((-1) + k) |
5,452 | x^3 + 1 = x^3 + \left(-1\right) = (x + (-1)) \cdot (x^2 + x + 1) = (x + 1) \cdot (x^2 + x + 1) |
-10,569 | \frac{\frac{1}{3}}{z \cdot 25} 3 = 3/(75 z) |
-8,033 | (i\cdot 4 - 10)/\left(-2\right) = -10/(-2) + i\cdot 4/(-2) |
1,499 | 3 = \left\lceil{\frac{1}{16} 33}\right\rceil |
26,417 | \left(b - c\right)^2 + b\cdot c = b^2 - c\cdot b + c^2 |
20,357 | \frac{1}{3 + \left(-1\right)} \cdot ((-1) + 3^{n + 1}) = 3^n \cdot 2 \Rightarrow 0 = -3^n + (-1) |
24,547 | 12\cdot l + 2 = 7\cdot l + 1 + 5\cdot l + 1 |
18,836 | a - i = -(-a + i) |
10,356 | \left(1/A = 3*A \Rightarrow A^2*3 = x\right) \Rightarrow \frac{x}{3} = A^2 |
42,631 | 2000 + 1023 \left(-1\right) = 977 |
-12,112 | 14/45 = \frac{\delta}{12\cdot \pi}\cdot 12\cdot \pi = \delta |
28,292 | (a + h)^2 = 100 = a^2 + 2\times a\times h + h^2\Longrightarrow -\frac{1}{2}\times (a^2 + h^2) = h\times a |
-28,966 | 4 = 13 + 9 \times \left(-1\right) |
-21,442 | \frac{1}{10}\cdot 3\cdot \frac{10}{10} = \dfrac{30}{100} |
14,209 | \dfrac{2}{2^m} = \frac{1}{2^{(-1) + m}} |
2,671 | 2 \cdot 2 + 4^2 + 4^2 = 6 \cdot 6 |
33,381 | 3796 + 52*\left(-1\right) = 3744 |
-20,876 | \left((-4)*i\right)/\left((-28)*i\right) = \frac{1/((-4)*i)*(-4*i)}{7} |
17,626 | X*W = X*W*\left(Z + Z'\right) = X*W*Z + X*W*Z' |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.