id
int64
-30,985
55.9k
text
stringlengths
5
437k
2,219
D_J \cdot N_J = N_J \cdot D_J
28,608
\dfrac{2}{36} = \frac{1}{18}
-2,743
\left(1 + 2 + 4\right)*3^{1/2} = 7*3^{1/2}
-19,676
\dfrac{2\cdot 4}{7} = \frac{8}{7}
12,861
-s*s*x = -1 \implies 1/s = x*s
3,525
(23\cdot (-1) + g)^2 + g \cdot g = 289 rightarrow 0 = 240 + g \cdot g\cdot 2 - g\cdot 46
27,447
\tfrac{\frac{1}{19^{20}}}{\frac{1}{20^{20}}} = \dfrac{20^{20}}{19^{20}} \approx 2.79
10,988
2 \cdot (-1) + x = 3 \implies 5 = x
38,294
1 + 2*m^2 + 3*m = (m + 1)*\left(2*m + 1\right)
-18,949
23/40 = H_x/(16\times π)\times 16\times π = H_x
36,114
\frac{1}{4 + 1}*(9 + 2) = \frac{1}{5}*11
26,193
(y + f/2) \cdot (y + f/2) + c - \dfrac{1}{4} \cdot f \cdot f = y \cdot y + f \cdot y + c
-1,060
\frac{1}{5}*2/\left(\tfrac{1}{4}*\left(-5\right)\right) = -4/5*\frac25
26,806
(-4)^k/(-4) = (-4)^{k + (-1)} = (-1)^{k + (-1)}*4^{k + (-1)}
-15,711
\dfrac{(s^5)^2}{\frac{1}{s^{12}*\frac{1}{r^{12}}}} = \frac{s^{10}}{\dfrac{1}{s^{12}}*r^{12}}
5,576
2/3 \cdot \frac{1}{10} \cdot 4 \cdot \frac36 = 2/15
-20,107
\frac{20 \cdot q + 28}{20 \cdot \left(-1\right) + 4 \cdot q} = \frac14 \cdot 4 \cdot \dfrac{5 \cdot q + 7}{5 \cdot (-1) + q}
17,738
\cos(\theta) = \sin(-\theta + \pi/2)
-3,696
\frac{p}{p \cdot p} \cdot 45/99 = \frac{9 \cdot 5}{11 \cdot 9} \cdot \frac{p}{p \cdot p}
-26,572
9^2 - (x \cdot 2)^2 = (9 - 2 \cdot x) \cdot (9 + x \cdot 2)
-9,460
-2 \cdot 2 \cdot 5 \cdot p + 5 \cdot (-1) = 5 \cdot (-1) - p \cdot 20
13,921
4 + (x + 2 \cdot (-1)) \cdot (x + 2) = x^2
51,013
z^9 + (-1) = \left(z - e^{i\frac{2\pi}{9}}\right) \left(-e^{-\pi \cdot 2/9 i} + z\right) \dots \cdot (z - e^{i \cdot 8\pi/9}) (z - e^{-\frac{\pi \cdot 8}{9}1 i}) (\left(-1\right) + z)
16,990
m = \left\{..., m, 1, 2\right\}
-10,688
\tfrac{5}{g\cdot 12 + 8\cdot (-1)}\cdot \frac13\cdot 3 = \frac{1}{36\cdot g + 24\cdot (-1)}\cdot 15
5,944
(2\cdot k + X) \cdot (2\cdot k + X) = k^2\cdot 4 + k\cdot X\cdot 4 + X^2
23,645
(1 + k)!/k! = k + 1
28,289
\sin(y*2) = 2 \cos(y) \sin(y)
-3,182
\sqrt{7} \times \left(4 + 3 \times (-1)\right) = \sqrt{7}
-2,814
10 \cdot \sqrt{13} = \sqrt{13} \cdot (1 + 4 + 5)
38,445
\tfrac{65}{288} = \frac{5}{2^5\cdot 3^2}\cdot 13
39,196
100*102 + 2 = \left(101 + (-1)\right)*(101 + 1) + 2 = 101^2 + (-1) + 2 = 101^2 + 1
-22,053
9/10 = \frac{1}{30}\cdot 27
-6,347
\frac{2}{r^2 + r\cdot 14 + 48} = \frac{1}{(6 + r) (r + 8)}2
-2,233
-\frac{1}{19} \cdot 8 + \frac{1}{19} \cdot 10 = 2/19
18,307
x \cdot x = 0\Longrightarrow x = 0
30,381
\left(p + (-1)\right)*(x + (-1))*\left(s + (-1)\right) = p*x*s - p*x + x*s + s*p + p + x + s + (-1) = p*x*s + \left(-1\right) + 357*(-1)
-9,347
-3*3*3*3 - 2*3*3*3*s = 81*(-1) - 54*s
6,840
0.9025 = \tanh{x}/x \approx 1 - \frac{x^2}{3} + 2 \cdot x^4/15
28,422
1867 (-10000) + 10000 \cdot 1867 = 0
-20,557
\frac{1}{(-10) x} (-18 x + 2 (-1)) = 2/2 \frac{1}{\left(-5\right) x} (-9 x + (-1))
32,683
\frac{6 - 9 \cdot 0}{1 + 0 \cdot (-1)} = \frac11 \cdot 6 = 6
42,474
21\times 6 + 16\times 6 + 11\times 6 + 6\times 6 = 324
3,739
\frac{19}{100} = \frac{1}{10} + \frac{1}{10} - 1/100
-7,164
\frac{7}{24} = 5/8\cdot \frac{1}{9}\cdot 6\cdot 7/10
38,327
V^T \cdot V = V \cdot V^T
-26,361
-5/3\cdot (-\frac{5}{3}) = 25/9
22,857
\left(m + 1\right)^2 - 31 m + 257 = m^2 + 2m + 1 - 31 m + 257 = m^2 - 29 m + 258
10,120
3^{\frac{z}{2}} = 2^z + (-1) = 4^{\frac{1}{2}z} + (-1)
-17,479
24 = 44 + 20 \cdot (-1)
-16,884
4 = -2 \cdot k^2 - 5 \cdot k + 4 \cdot (-2 \cdot k) + 4 \cdot (-5) = -2 \cdot k \cdot k - 5 \cdot k - 8 \cdot k + 20 \cdot (-1)
10,968
x^k\cdot x^M = x^{M + k}
-8,060
(-52 - 14*i + 130*i + 35*(-1))/29 = \frac{1}{29}*(-87 + 116*i) = -3 + 4*i
-28,795
3 = \frac{1}{1/3\times 2\times \pi}\times 2\times \pi
4,517
\left(77 = \left(l \cdot 3 + 1\right) \cdot 2 + 6 h + (1 + 2 k) \cdot 3 rightarrow 72 = 6 \left(h + k + l\right)\right) rightarrow h = 12 - l - k
10,756
n/b - n/g' = -\frac{1}{g'}*b*\dfrac{n}{b} + n/b
32,485
5\cdot q\cdot 7\cdot q\cdot 3\cdot q + -3\cdot q\cdot 3\cdot q\cdot (-3\cdot q) = 105\cdot q^3 + 27\cdot q^3 = 66\cdot q
-18,539
t + 9\cdot \left(-1\right) = 6\cdot (3\cdot t + 2) = 18\cdot t + 12
7,655
2^{2^n}\times 2^{2^m} = 2^{2^m + 2^n}
16,743
\frac13 \cdot \pi = \operatorname{atan}(\sqrt{3})
-2,030
\pi \cdot 23/12 = \pi + 11/12 \cdot \pi
-2,608
\sqrt{16\times 2} + \sqrt{9\times 2} = \sqrt{18} + \sqrt{32}
21,505
\frac{4}{2} + 1/2 - 2/2 = \frac{3}{2}
12,970
\frac{2*1/3}{3}*\frac{2}{3} = \frac{4}{27}
29,348
4^5 + 45^5 + 57^5 + 90^5 + 91^5 + 98^5 = (4 + 45 + 57 + 90 + 91 + 98)^4
54,545
\frac{1}{U_1}\cdot (U_2 - U_0) = \dfrac{1}{U_1}\cdot (U_2 - U_0)\cdot \frac{U_2 + U_2}{U_2 + U_0} = -\frac{U_1}{U_2 + U_0}
-10,731
\frac{15}{36 \cdot m + 12 \cdot (-1)} = \frac{3}{3} \cdot \frac{5}{4 \cdot (-1) + m \cdot 12}
4,011
x = (z^2 + (-1)) e^{(-1) + 2012 z} \implies \frac{x}{z * z + \left(-1\right)} = e^{2012 z + (-1)}
29,999
\sqrt {-1}\cdot \sqrt{-1}=-1
17,224
\frac{\left(-2\right)\cdot x}{x^2} = -\frac2x
32,424
\frac{8 + (-1)}{4 + 8 + (-1)}*0.4*\frac{8}{4 + 8}*0.4 = 56/825
856
a h^4 a = h^6 \Rightarrow h^4 = a h^6 a = h^9
11,623
4 - (4 + y^2 - y*4)*7 = 24*\left(-1\right) - y^2*7 + 28*y
-1,632
\dfrac12\cdot 3\cdot π = \frac{π}{2} + π
-20,026
\dfrac{56 (-1) + 56 s}{s*48 + 48 (-1)} = 7/6 \tfrac{1}{8(-1) + 8s}(s*8 + 8(-1))
4,874
2^{\frac13(n + 1)} = 2^{\frac{1}{3}}*2^{n/3} > n*2^{\frac13}
35,111
1/(B\cdot Z) = \frac{1}{Z\cdot B}
23,107
\sqrt{1 - x \cdot x} = \cos\left(\sin^{-1}(x)\right)
1,451
\sin\left(Y_1 + Y_2\right) = \cos(Y_1) \cdot \sin\left(Y_2\right) + \cos(Y_2) \cdot \sin(Y_1)
-27,491
8 \cdot f \cdot f = 2 \cdot 2 \cdot f \cdot f \cdot 2
25,174
\sqrt{5} \cdot 6^{1/4}/50 = (\tfrac{24}{10^6})^{1/4}
25,736
\frac{1}{x^9} + \frac{1}{z^9} = \dfrac{1}{x^9*z^9}*(x^9 + z^9)
18,467
0 = 2/3 \cdot (-6 \cdot x^2 + 1) \Rightarrow x = 1/\left(\sqrt{6}\right)
16,391
\frac{1}{4 + x}x = \frac{x}{4 + i + x - i}
38,411
G^x G^l = G^{x + l}
30,165
2\cdot \cos{a}\cdot \sin{a} = \sin{a\cdot 2}
2,574
(e + g) \cdot f = e \cdot f + f \cdot g
34,118
vx^1 = vx
8,529
\tan\left(\operatorname{arccot}\left(t\right)\right) = 1/\cot\left(\operatorname{arccot}(t)\right) = 1/t
20,898
S^2 = \left(\sqrt{n + \sqrt{n + \sqrt{n + ...}}}\right)^2 = n + S
16,035
\frac{1}{15}*2 = 4/3 - \dfrac{6}{5}
-719
(e^{\dfrac{5}{6}\cdot \pi\cdot i})^4 = e^{\dfrac56\cdot i\cdot \pi\cdot 4}
14,672
\left((-1) + n\right)\cdot \left(2\cdot (-1) + n\right) + 4 = 6 + n^2 - n\cdot 3
26,116
\sin{\frac{1}{2} \cdot C} \cdot \cos{\frac12 \cdot C} \cdot 2 = \sin{C}
-3,062
\sqrt{5} \cdot 7 = (1 + 2 + 4) \sqrt{5}
19,591
-w \times -x \times (w + x) \times 3 = \left(x + w\right)^3 - w^3 - x^3
-10,696
\frac{18 (-1) + y*4}{30 y + 18} = \frac{2}{2} \frac{2y + 9\left(-1\right)}{15 y + 9}
35,181
(x^b)^a = (x^b)^a
6,330
12 = -3 \cdot \left(3 + 2 \cdot (-1)\right) + (2 + 3) \cdot 3
8,360
-\frac{1}{4} \cdot p^2 + (x + p/2)^2 + q = x^2 + p \cdot x + q