id
int64
-30,985
55.9k
text
stringlengths
5
437k
33,601
(d + e)*h = d*h + h*e
-8,464
21 \div -7 = -3
-10,282
6 = -3 \cdot j + 1 + 9 = -3 \cdot j + 10
26,880
3! = 1 \times 2 \times 3
-5,273
5.3*10^{9 + 5*(-1)} = 5.3*10^4
-9,425
3 \cdot t + 3 = 3 \cdot t + 3
16,284
4 = {4 \choose 3}\cdot {(-1) + 0 + 4 \choose 0}
-16,431
\sqrt{50} \cdot 7 = \sqrt{25 \cdot 2} \cdot 7
37,895
(x + \lambda \cdot I) \cdot (x + \lambda \cdot I) = I \cdot \lambda + x
3,820
(h^2 + b^2 + f^2 - f \cdot h - b \cdot h - b \cdot f) \cdot (h + b + f) = h^3 + b \cdot b^2 + f^3 - h \cdot f \cdot b \cdot 3
-2,011
-\pi \cdot \frac{3}{2} = \pi \cdot \frac{5}{12} - \pi \cdot \frac{1}{12} \cdot 23
44,215
2 \cdot (1/2)^3 - 5 \cdot (\dfrac{1}{2})^2 + \frac{8}{2} + 3 \cdot (-1) = \frac{1}{4} - 5/4 + 4 + 3 \cdot (-1) = 0
3,702
15 = \frac{1}{5}*(78 + 3*\left(-1\right))
-7,124
6/11\cdot \frac{1}{10} 5 = \dfrac{1}{11} 3
24,502
(\sigma - l) (l + \sigma) = \sigma^2 - l^2
11,367
(-y + x)\times (y^2 + x^2 + y\times x) = x^3 - y^3
52,659
\binom{17}{2} = 136
13,503
x + (-1) + y + 1 + z + (-1) = 0 \Rightarrow z + x + y = 1
18,991
(-x + 2)*\left(1 + x\right) = 2 + x - x^2
-7,220
\dfrac{1}{7}2\cdot 3/8\cdot 4/9 = \frac{1}{21}
8,128
5 + (n + (-1))\cdot 3 = 2 + 3\cdot n
-3,656
\frac{63 \cdot q}{70 \cdot q^4} = \frac{63}{70} \cdot \frac{1}{q^4} \cdot q
15,300
3^m \cdot \left(x - -\tfrac23\right)^m = \left(2 + 3 \cdot x\right)^m
-4,324
\frac{a^4}{a^2 \cdot 10} = a^4 \cdot \tfrac{1}{a^2}/10
6,649
9z_1^2 + z_2^2 - z_1 z_2*6 = 16\Longrightarrow (z_2 - 3z_1)^2 = 16
955
\frac{12}{7} = \dfrac{1}{7}/(\tfrac{1}{4}*\dfrac{1}{3})
30,183
\arctan(x) \cdot (x^2 + 1) - \arctan(x) = x^2 \cdot \arctan(x)
-2,677
\sqrt{6} = (3 + 2 + 4\times (-1))\times \sqrt{6}
-19,001
\frac25 = \tfrac{C_q}{4 \cdot \pi} \cdot 4 \cdot \pi = C_q
14,079
\left(2*a*b\right)^2 + (a^2 - b^2)^2 = (a^2 + b^2)^2
30,500
\left\lceil{z + (-1)}\right\rceil = \left(-1\right) + \left\lceil{z}\right\rceil
-7,679
\frac{i + 4}{4 + i} \times \tfrac{1}{4 - i} \times (-20 + 5 \times i) = \tfrac{1}{4 - i} \times (-20 + 5 \times i)
-19,587
7/4 \cdot 5/9 = \frac{7}{9 \cdot \frac{1}{5}} \cdot 1/4
-18,400
\tfrac{z}{(z + 2) (6(-1) + z)}(6\left(-1\right) + z) = \frac{-z\cdot 6 + z^2}{z^2 - 4z + 12 (-1)}
-7,967
\frac{1}{25}(-21 + 72 i + 28 i + 96) = \frac{1}{25}(75 + 100 i) = 3 + 4i
10,619
(l + n)/2 \leq 0.5\Longrightarrow -l - n + 1 = |(-1) + l + n|
-20,095
\dfrac{1}{20*\left(-1\right) + 4*r}*(45*(-1) + 9*r) = \frac94*\frac{r + 5*\left(-1\right)}{r + 5*\left(-1\right)}
2,894
4 \cdot \left(18 \cdot t - 6 \cdot k + 10\right) + 6 \cdot k + 4 \cdot (-1) = 72 \cdot t - 24 \cdot k + 40 + 6 \cdot k + 4 \cdot \left(-1\right) = 18 \cdot \left(4 \cdot t - k + 2\right)
23,339
2\cdot x^2 = (0.25 + x^2)\cdot 2 - 0.5
-7,248
3/35 = \frac{6}{14}*\dfrac{3}{15}
-26,576
2 \cdot y^2 + 162 \cdot (-1) = 2 \cdot (y^2 + 81 \cdot (-1)) = 2 \cdot \left(y + 9\right) \cdot (y + 9 \cdot (-1))
-23,064
\frac72\cdot 1/2 = \dfrac{7}{4}
23,515
-l_2 + l_2 \cdot 2^{l_1} = (2^{l_1} + (-1)) \cdot l_2
11,518
4\cdot (4/3)^{x + \left(-1\right)} = 4\cdot \frac{4^{x + (-1)}}{3^{x + (-1)}} = \frac{4^x}{3^{x + (-1)}}
-2,310
6/18 = 1/3
3,172
1073 + k\cdot 261 = 1073 + 29\cdot 9\cdot k
-11,732
(7/9)^2 = 49/81
-6,689
0/10 + 7/100 = 0/100 + \frac{7}{100}
7,473
\frac{\mathrm{d}c}{\mathrm{d}x} = 0 = 0\cdot c
11,378
D*z*2 + z * z + D^2 = (D + z)^2
15,666
n^3 - n \cdot 37 + 60 = \left(n + 5 \cdot (-1)\right) \cdot (n^2 + 5 \cdot n + 12 \cdot \left(-1\right))
-20,943
\dfrac{1}{40 \cdot q} \cdot (q \cdot 30 + 40) = 5/5 \cdot \tfrac{1}{q \cdot 8} \cdot (6 \cdot q + 8)
4,275
y^4 + (-1) = \left(y^2 + (-1)\right) (y^2 + 1) = \left(y + (-1)\right) \left(y + 1\right) (y^2 + 1)
24,223
Ae^{iSx} = Ae^{iSx}
-23,104
4 = -3 \cdot (-\frac13 \cdot 4)
15,957
1 + x^2 = 3 - -x \cdot x + 2
28,141
b = wfb - f\tau x = f\cdot \left(wb - \tau x\right)
-20,265
\frac{1}{18 (-1) - D \cdot 10} (2 (-1) - 18 D) = \dfrac{1}{2} 2 \frac{(-1) - D \cdot 9}{9 (-1) - 5 D}
-28,818
(2 + 6)/2 = 8/2 = 4
28,045
0.08\cdot 0.49 + (\left(-1\right)\cdot 0.01 + 1)\cdot 0.51 = 0.5441
-5,612
\frac{2}{(2 + a) \cdot (10 \cdot (-1) + a)} = \frac{2}{a^2 - a \cdot 8 + 20 \cdot (-1)}
-19,592
7/2 \cdot \frac15 \cdot 9 = \frac{1}{2 \cdot \frac17} \cdot \frac{9}{5}
24,566
2 \cdot n + (-1) = n^2 - (n + (-1))^2
12,258
y^9\cdot x^3/1 = \dfrac{1}{x^7}\cdot y^9\cdot x^{10}
-23,377
9/32 = \frac38*3/4
12,867
2^m \cdot 2^k = 2^{m + k}
-20,847
-\frac13 \cdot 8 \cdot \frac{l \cdot 6}{6 \cdot l} = \dfrac{1}{l \cdot 18} \cdot ((-48) \cdot l)
22,007
z^2 - z*3 + 2 = (2*(-1) + z)*((-1) + z)
-14,725
91 = \dfrac{910}{10}
25,423
e^{-b} = e^{b*i * i} = \cos{b*i} + i*\sin{b*i}
30,902
\dfrac{2 \cdot p}{2 \cdot p + 2 \cdot \left(-1\right)} = \dfrac{p}{p + (-1)}
37,439
2 + 10 + 5\cdot \left(-1\right) = 7
19,399
(y + 1)*\left(2*(-1) + y\right) = 2*(-1) + y * y - y
13,737
9 \times x^2 + 36 \times (-1) = 3 \times x^2 - 6^2 = \left(3 \times x + 6\right) \times (3 \times x + 6 \times (-1)) = 3 \times \left(x + 2\right) \times \left(3 \times x + 6 \times (-1)\right) = 9 \times \left(x + 2\right) \times (x + 2 \times (-1))
3,638
27 = ((-1) + 10)^{1/2}*9
1,064
\dfrac{1}{2\cdot \lambda} + \frac{1}{\lambda} = \frac{3}{\lambda\cdot 2}
-20,637
-6/7\cdot \frac{1}{-3\cdot y + 2}\cdot (-3\cdot y + 2) = \frac{12\cdot \left(-1\right) + 18\cdot y}{-21\cdot y + 14}
4,488
(5 + 9 + 2)*3 r + 6 r = r*54
-18,980
7/24 = Z_p/(4\cdot \pi)\cdot 4\cdot \pi = Z_p
47,007
\left(-38\right)\cdot 34 + 3\cdot 431 = 1
14,138
\frac{2^k}{2 k} = \frac{2^{2 k}}{2^k k\cdot 2}
28,445
1 + (\frac18 + t)^2 - \frac{1}{64} = 1 + t \cdot t + t/4
30,049
\cos(\operatorname{acos}(R)) = R
42,426
i/12 = 1.14^{\frac{1}{12}} + (-1) = 0.010978852
7,397
4 = 48/(4*3)
7,516
\cos(-\delta_0 + 2π) = \cos(\delta_0)
-176
{7 \choose 6} = \frac{7!}{(6 \times \left(-1\right) + 7)! \times 6!}
-8,469
\left(-3\right)*\left(-1\right) = 3
-20,101
\frac{x + 3\cdot \left(-1\right)}{x + 3\cdot \left(-1\right)}\cdot (-\frac17\cdot 4) = \dfrac{12 - x\cdot 4}{21\cdot (-1) + 7\cdot x}
42,747
W^X = W^X
-7,647
(-3*i + 3)/\left(-1\right) = \frac{3}{-1} - i*3/(-1)
4,338
\frac{900}{20 \cdot 19 \cdot 18} \cdot 1 \cdot 6 = \tfrac{1}{76} \cdot 60
16,157
V \cdot b + x \cdot a + V \cdot a = b \cdot V + a \cdot x
23,786
-1/7 \geq x \Rightarrow -1/7 \geq x
19,077
3042-12^3-7^3=971
23,658
12 + \left(12*(-1) + \sqrt{154}\right)/1 = \sqrt{154}
25,272
6 = 2!\cdot \binom{4}{2}\cdot \binom{2}{2} - \binom{3}{2}\cdot \binom{4}{3}\cdot 1! + \binom{4}{2}\cdot 0!\cdot \binom{4}{4}
4,792
\dfrac{1}{l + u} \cdot \left((-1) \cdot u\right) = (-1) + \frac{l}{u + l}
22,468
(-4)^3 = \left(-1\right)^2 \cdot (-1) \cdot 4^3 = -64
-27,721
-\cot(x) \cdot \csc(x) = \frac{\text{d}}{\text{d}x} \csc(x)