id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
33,601 | (d + e)*h = d*h + h*e |
-8,464 | 21 \div -7 = -3 |
-10,282 | 6 = -3 \cdot j + 1 + 9 = -3 \cdot j + 10 |
26,880 | 3! = 1 \times 2 \times 3 |
-5,273 | 5.3*10^{9 + 5*(-1)} = 5.3*10^4 |
-9,425 | 3 \cdot t + 3 = 3 \cdot t + 3 |
16,284 | 4 = {4 \choose 3}\cdot {(-1) + 0 + 4 \choose 0} |
-16,431 | \sqrt{50} \cdot 7 = \sqrt{25 \cdot 2} \cdot 7 |
37,895 | (x + \lambda \cdot I) \cdot (x + \lambda \cdot I) = I \cdot \lambda + x |
3,820 | (h^2 + b^2 + f^2 - f \cdot h - b \cdot h - b \cdot f) \cdot (h + b + f) = h^3 + b \cdot b^2 + f^3 - h \cdot f \cdot b \cdot 3 |
-2,011 | -\pi \cdot \frac{3}{2} = \pi \cdot \frac{5}{12} - \pi \cdot \frac{1}{12} \cdot 23 |
44,215 | 2 \cdot (1/2)^3 - 5 \cdot (\dfrac{1}{2})^2 + \frac{8}{2} + 3 \cdot (-1) = \frac{1}{4} - 5/4 + 4 + 3 \cdot (-1) = 0 |
3,702 | 15 = \frac{1}{5}*(78 + 3*\left(-1\right)) |
-7,124 | 6/11\cdot \frac{1}{10} 5 = \dfrac{1}{11} 3 |
24,502 | (\sigma - l) (l + \sigma) = \sigma^2 - l^2 |
11,367 | (-y + x)\times (y^2 + x^2 + y\times x) = x^3 - y^3 |
52,659 | \binom{17}{2} = 136 |
13,503 | x + (-1) + y + 1 + z + (-1) = 0 \Rightarrow z + x + y = 1 |
18,991 | (-x + 2)*\left(1 + x\right) = 2 + x - x^2 |
-7,220 | \dfrac{1}{7}2\cdot 3/8\cdot 4/9 = \frac{1}{21} |
8,128 | 5 + (n + (-1))\cdot 3 = 2 + 3\cdot n |
-3,656 | \frac{63 \cdot q}{70 \cdot q^4} = \frac{63}{70} \cdot \frac{1}{q^4} \cdot q |
15,300 | 3^m \cdot \left(x - -\tfrac23\right)^m = \left(2 + 3 \cdot x\right)^m |
-4,324 | \frac{a^4}{a^2 \cdot 10} = a^4 \cdot \tfrac{1}{a^2}/10 |
6,649 | 9z_1^2 + z_2^2 - z_1 z_2*6 = 16\Longrightarrow (z_2 - 3z_1)^2 = 16 |
955 | \frac{12}{7} = \dfrac{1}{7}/(\tfrac{1}{4}*\dfrac{1}{3}) |
30,183 | \arctan(x) \cdot (x^2 + 1) - \arctan(x) = x^2 \cdot \arctan(x) |
-2,677 | \sqrt{6} = (3 + 2 + 4\times (-1))\times \sqrt{6} |
-19,001 | \frac25 = \tfrac{C_q}{4 \cdot \pi} \cdot 4 \cdot \pi = C_q |
14,079 | \left(2*a*b\right)^2 + (a^2 - b^2)^2 = (a^2 + b^2)^2 |
30,500 | \left\lceil{z + (-1)}\right\rceil = \left(-1\right) + \left\lceil{z}\right\rceil |
-7,679 | \frac{i + 4}{4 + i} \times \tfrac{1}{4 - i} \times (-20 + 5 \times i) = \tfrac{1}{4 - i} \times (-20 + 5 \times i) |
-19,587 | 7/4 \cdot 5/9 = \frac{7}{9 \cdot \frac{1}{5}} \cdot 1/4 |
-18,400 | \tfrac{z}{(z + 2) (6(-1) + z)}(6\left(-1\right) + z) = \frac{-z\cdot 6 + z^2}{z^2 - 4z + 12 (-1)} |
-7,967 | \frac{1}{25}(-21 + 72 i + 28 i + 96) = \frac{1}{25}(75 + 100 i) = 3 + 4i |
10,619 | (l + n)/2 \leq 0.5\Longrightarrow -l - n + 1 = |(-1) + l + n| |
-20,095 | \dfrac{1}{20*\left(-1\right) + 4*r}*(45*(-1) + 9*r) = \frac94*\frac{r + 5*\left(-1\right)}{r + 5*\left(-1\right)} |
2,894 | 4 \cdot \left(18 \cdot t - 6 \cdot k + 10\right) + 6 \cdot k + 4 \cdot (-1) = 72 \cdot t - 24 \cdot k + 40 + 6 \cdot k + 4 \cdot \left(-1\right) = 18 \cdot \left(4 \cdot t - k + 2\right) |
23,339 | 2\cdot x^2 = (0.25 + x^2)\cdot 2 - 0.5 |
-7,248 | 3/35 = \frac{6}{14}*\dfrac{3}{15} |
-26,576 | 2 \cdot y^2 + 162 \cdot (-1) = 2 \cdot (y^2 + 81 \cdot (-1)) = 2 \cdot \left(y + 9\right) \cdot (y + 9 \cdot (-1)) |
-23,064 | \frac72\cdot 1/2 = \dfrac{7}{4} |
23,515 | -l_2 + l_2 \cdot 2^{l_1} = (2^{l_1} + (-1)) \cdot l_2 |
11,518 | 4\cdot (4/3)^{x + \left(-1\right)} = 4\cdot \frac{4^{x + (-1)}}{3^{x + (-1)}} = \frac{4^x}{3^{x + (-1)}} |
-2,310 | 6/18 = 1/3 |
3,172 | 1073 + k\cdot 261 = 1073 + 29\cdot 9\cdot k |
-11,732 | (7/9)^2 = 49/81 |
-6,689 | 0/10 + 7/100 = 0/100 + \frac{7}{100} |
7,473 | \frac{\mathrm{d}c}{\mathrm{d}x} = 0 = 0\cdot c |
11,378 | D*z*2 + z * z + D^2 = (D + z)^2 |
15,666 | n^3 - n \cdot 37 + 60 = \left(n + 5 \cdot (-1)\right) \cdot (n^2 + 5 \cdot n + 12 \cdot \left(-1\right)) |
-20,943 | \dfrac{1}{40 \cdot q} \cdot (q \cdot 30 + 40) = 5/5 \cdot \tfrac{1}{q \cdot 8} \cdot (6 \cdot q + 8) |
4,275 | y^4 + (-1) = \left(y^2 + (-1)\right) (y^2 + 1) = \left(y + (-1)\right) \left(y + 1\right) (y^2 + 1) |
24,223 | Ae^{iSx} = Ae^{iSx} |
-23,104 | 4 = -3 \cdot (-\frac13 \cdot 4) |
15,957 | 1 + x^2 = 3 - -x \cdot x + 2 |
28,141 | b = wfb - f\tau x = f\cdot \left(wb - \tau x\right) |
-20,265 | \frac{1}{18 (-1) - D \cdot 10} (2 (-1) - 18 D) = \dfrac{1}{2} 2 \frac{(-1) - D \cdot 9}{9 (-1) - 5 D} |
-28,818 | (2 + 6)/2 = 8/2 = 4 |
28,045 | 0.08\cdot 0.49 + (\left(-1\right)\cdot 0.01 + 1)\cdot 0.51 = 0.5441 |
-5,612 | \frac{2}{(2 + a) \cdot (10 \cdot (-1) + a)} = \frac{2}{a^2 - a \cdot 8 + 20 \cdot (-1)} |
-19,592 | 7/2 \cdot \frac15 \cdot 9 = \frac{1}{2 \cdot \frac17} \cdot \frac{9}{5} |
24,566 | 2 \cdot n + (-1) = n^2 - (n + (-1))^2 |
12,258 | y^9\cdot x^3/1 = \dfrac{1}{x^7}\cdot y^9\cdot x^{10} |
-23,377 | 9/32 = \frac38*3/4 |
12,867 | 2^m \cdot 2^k = 2^{m + k} |
-20,847 | -\frac13 \cdot 8 \cdot \frac{l \cdot 6}{6 \cdot l} = \dfrac{1}{l \cdot 18} \cdot ((-48) \cdot l) |
22,007 | z^2 - z*3 + 2 = (2*(-1) + z)*((-1) + z) |
-14,725 | 91 = \dfrac{910}{10} |
25,423 | e^{-b} = e^{b*i * i} = \cos{b*i} + i*\sin{b*i} |
30,902 | \dfrac{2 \cdot p}{2 \cdot p + 2 \cdot \left(-1\right)} = \dfrac{p}{p + (-1)} |
37,439 | 2 + 10 + 5\cdot \left(-1\right) = 7 |
19,399 | (y + 1)*\left(2*(-1) + y\right) = 2*(-1) + y * y - y |
13,737 | 9 \times x^2 + 36 \times (-1) = 3 \times x^2 - 6^2 = \left(3 \times x + 6\right) \times (3 \times x + 6 \times (-1)) = 3 \times \left(x + 2\right) \times \left(3 \times x + 6 \times (-1)\right) = 9 \times \left(x + 2\right) \times (x + 2 \times (-1)) |
3,638 | 27 = ((-1) + 10)^{1/2}*9 |
1,064 | \dfrac{1}{2\cdot \lambda} + \frac{1}{\lambda} = \frac{3}{\lambda\cdot 2} |
-20,637 | -6/7\cdot \frac{1}{-3\cdot y + 2}\cdot (-3\cdot y + 2) = \frac{12\cdot \left(-1\right) + 18\cdot y}{-21\cdot y + 14} |
4,488 | (5 + 9 + 2)*3 r + 6 r = r*54 |
-18,980 | 7/24 = Z_p/(4\cdot \pi)\cdot 4\cdot \pi = Z_p |
47,007 | \left(-38\right)\cdot 34 + 3\cdot 431 = 1 |
14,138 | \frac{2^k}{2 k} = \frac{2^{2 k}}{2^k k\cdot 2} |
28,445 | 1 + (\frac18 + t)^2 - \frac{1}{64} = 1 + t \cdot t + t/4 |
30,049 | \cos(\operatorname{acos}(R)) = R |
42,426 | i/12 = 1.14^{\frac{1}{12}} + (-1) = 0.010978852 |
7,397 | 4 = 48/(4*3) |
7,516 | \cos(-\delta_0 + 2π) = \cos(\delta_0) |
-176 | {7 \choose 6} = \frac{7!}{(6 \times \left(-1\right) + 7)! \times 6!} |
-8,469 | \left(-3\right)*\left(-1\right) = 3 |
-20,101 | \frac{x + 3\cdot \left(-1\right)}{x + 3\cdot \left(-1\right)}\cdot (-\frac17\cdot 4) = \dfrac{12 - x\cdot 4}{21\cdot (-1) + 7\cdot x} |
42,747 | W^X = W^X |
-7,647 | (-3*i + 3)/\left(-1\right) = \frac{3}{-1} - i*3/(-1) |
4,338 | \frac{900}{20 \cdot 19 \cdot 18} \cdot 1 \cdot 6 = \tfrac{1}{76} \cdot 60 |
16,157 | V \cdot b + x \cdot a + V \cdot a = b \cdot V + a \cdot x |
23,786 | -1/7 \geq x \Rightarrow -1/7 \geq x |
19,077 | 3042-12^3-7^3=971 |
23,658 | 12 + \left(12*(-1) + \sqrt{154}\right)/1 = \sqrt{154} |
25,272 | 6 = 2!\cdot \binom{4}{2}\cdot \binom{2}{2} - \binom{3}{2}\cdot \binom{4}{3}\cdot 1! + \binom{4}{2}\cdot 0!\cdot \binom{4}{4} |
4,792 | \dfrac{1}{l + u} \cdot \left((-1) \cdot u\right) = (-1) + \frac{l}{u + l} |
22,468 | (-4)^3 = \left(-1\right)^2 \cdot (-1) \cdot 4^3 = -64 |
-27,721 | -\cot(x) \cdot \csc(x) = \frac{\text{d}}{\text{d}x} \csc(x) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.