id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
36,786 | z * z + I = z^2 + z^2 + z + I = z + I |
33,761 | \mathbb{E}(U) + \mathbb{E}(X) = \mathbb{E}(X + U) |
-4,742 | -\frac{1}{y + 4*(-1)}*2 - \dfrac{5}{y + 3*(-1)} = \frac{26 - y*7}{y^2 - 7*y + 12} |
39,881 | \frac{1}{\sqrt{11}} = \sqrt{11}/11 |
51,184 | \left(-1\right)^2 = 1 \cdot 1 |
22,437 | m + (-1) = 3*(-1) + 2 + m |
-28,843 | 7.4*x + 8*x + 12*(-1) = 12*(-1) + x*7.4 + x*8 |
30,696 | -(l + 1) + x + 1 = x - l |
17,877 | \left(x = -f \implies f^n = x^n\right) \implies f^n\cdot 2 = x^n + f^n |
-26,752 | \sum_{n=1}^\infty \dfrac{(-5)^n}{n\cdot 5^n} = \sum_{n=1}^\infty \frac{(-1)^n\cdot 5^n}{n\cdot 5^n} = \sum_{n=1}^\infty \tfrac{1}{n}\cdot (-1)^n |
4,487 | \frac{1}{π} \cdot \int \frac{1}{y + 2/π} \cdot y\,dy = \int \dfrac{1}{2 + y \cdot π} \cdot y\,dy |
36,402 | 6\cdot q\cdot x = -x\cdot q + q\cdot 3\cdot x + x\cdot 2\cdot q\cdot 2 |
10,233 | z^3 = 2 + 11 \times i + 2 - 11 \times i + 3 \times ((2 + 11 \times i) \times (2 - 11 \times i))^{1/3} \times z = 4 + 15 \times z |
17,626 | W_1 Y = W_1 Y \cdot (W_2 + x) = W_1 Y W_2 + W_1 Y x |
27,121 | 1 + 0 \cdot (-1) + 2 = 3 |
20,710 | \binom{l}{i} = \dfrac{1}{i! \cdot (l - i)!} \cdot l! |
23,158 | 4 = 2 \cdot 2 = (1 + \sqrt{-3}) \cdot (1 - \sqrt{-3}) |
16,879 | y^2 \lt 4 rightarrow 2 > |y| |
31,954 | 11/36 = 1 - 25/36 |
6,181 | \left(3\cdot (-1) + x\right)\cdot ((-1) + x\cdot 2) = 2\cdot x \cdot x - 7\cdot x + 3 |
-18,304 | \dfrac{1}{(10 \left(-1\right) + z) z} \left(z + 10 (-1)\right) (z + 3 (-1)) = \dfrac{30 + z^2 - z\cdot 13}{z^2 - 10 z} |
5,866 | (3 + x) (x + 1) = x^2 + x\cdot 4 + 3 |
4,538 | (m + x*k)/k = \frac{m}{k} + x |
9,769 | z^2 - a^2 = a \cdot a - z \cdot z^2 - a^2 = z - a^2 |
-16,501 | 9\cdot \sqrt{25\cdot 2} = 9\cdot \sqrt{50} |
10,609 | (z - x) (z + x) = -x^2 + z^2 |
29,437 | x^4 \cdot 2 - 1 - 3 \cdot x^3 = (1 - x + 2 \cdot x^2) \cdot (-1 - x + x^2) |
-554 | (e^{\frac{13*i*\pi}{12}})^{13} = e^{13*\frac{13*\pi*i}{12}} |
25,694 | \sin\left(y\right) \cos(y) = \sin(2y)/2 = \frac{2\tan(y)}{2}\dfrac{1}{1 + \tan^2(y)} |
13,867 | x x + (-1) = (1 + x) \left((-1) + x\right) |
21,679 | d*a/b = \frac{a}{1/d*b} |
25,116 | (f + a)^2 = f^2 + a * a + 2*a*f |
6,109 | 2\cdot \lambda^3/\lambda = \lambda^2\cdot 2 |
15,872 | R = \frac12 \cdot R + Y/4 \implies \tfrac12 \cdot Y = R |
8,415 | (b*2)^2*0.25*n = b * b*n |
21,978 | (x + gi) (l + ki) = xl - gk + (xk + gl) i = xl - gk + i |
9,106 | 3/8*\frac12 + \frac16*2*\frac{1}{2} = \frac{1}{48}*17 |
-1,380 | \frac{(-9) \cdot 1/7}{1/7 \cdot (-9)} = -\dfrac19 \cdot 7 \cdot \left(-9/7\right) |
23,229 | 4! = (6 \left(-1\right) + 10)! |
-12,008 | 1/9 = p/(12*\pi)*12*\pi = p |
-7,578 | \frac{1}{(3 - i \cdot 5) \cdot (5 \cdot i + 3)} \cdot (3 - 5 \cdot i) \cdot (8 \cdot i - 2) = \dfrac{1}{-(5 \cdot i)^2 + 3^2} \cdot (-2 + i \cdot 8) \cdot (-5 \cdot i + 3) |
18,358 | |\sin{\frac{2}{m \cdot \pi}} \cdot \cos{\frac{\pi}{2} \cdot m}| = \sin{\frac{2}{m \cdot \pi}} > \frac{1}{m \cdot \pi} |
-20,614 | \frac14\cdot 7\cdot \frac{7\cdot (-1) - q\cdot 3}{7\cdot (-1) - q\cdot 3} = \dfrac{1}{28\cdot (-1) - 12\cdot q}\cdot (-21\cdot q + 49\cdot \left(-1\right)) |
35,095 | \sin(2\alpha) = 2\sin(\alpha) \cos(\alpha) |
-6,178 | \frac{4 \cdot q}{25 + q \cdot q - 10 \cdot q} = \frac{q \cdot 4}{\left(5 \cdot (-1) + q\right) \cdot (q + 5 \cdot (-1))} |
10,459 | z \cdot z + z = -\dfrac14 + \left(1/2 + z\right) \cdot \left(1/2 + z\right) |
16,246 | y + 8\cdot (-1) = -4\cdot (x + 1) = -4\cdot x + 4\cdot (-1) \implies 0 = y + x\cdot 4 + 4\cdot \left(-1\right) |
17,197 | \alpha/(\bar{\alpha}) = \tfrac{1}{\alpha \cdot \bar{\alpha}} \cdot \alpha^2 |
25,551 | \dfrac{1}{1/b} = b^{(-1)*\left(-1\right)} = b^1 = b |
33,141 | k^{2 \cdot 3} = k^6 |
-9,556 | 52\% = 52/100 = \frac{13}{25} |
11,055 | (y^{2\cdot a})^h = (y^a \cdot y^a)^h = (\tfrac{1}{y^a})^h = (y^a)^{h + \left(-1\right)} |
18,613 | 3*3*3 = 3 \Rightarrow 3*3 = 1 |
-676 | (e^{\frac{1}{12}\cdot i\cdot \pi\cdot 17})^7 = e^{7\cdot \frac{i\cdot \pi}{12}\cdot 17} |
9,741 | x^5 = 3 \cdot x^2 + 2 \cdot x = 5 \cdot x + 3 |
1,027 | a + \frac{1}{(-1)*b} = a + (-1) + \frac{1}{\frac{1}{(-1) + b} + 1} |
-23,090 | -1/9 (-\frac13) = \tfrac{1}{27} |
704 | 2^0 z = z |
-6,294 | \frac{2}{(d + 9\left(-1\right)) (d + 5\left(-1\right))} = \frac{2}{d^2 - 14 d + 45} |
9,482 | (1 + a)\cdot (1 + a)^k = (a + 1)^{k + 1} |
5,412 | \left( a + m \cdot l, l\right) = (a + m \cdot l) \cdot x + l \cdot z = a \cdot x + m \cdot l \cdot x + l \cdot z |
-20,930 | \frac{1}{(-1) \cdot 25 \cdot x} \cdot x \cdot 40 = \frac{x \cdot (-5)}{x \cdot \left(-5\right)} \cdot (-\frac15 \cdot 8) |
5,814 | \frac{10}{31} \cdot 2 \cdot V - \tfrac{21}{31} \cdot V = \dfrac{1}{31} \cdot ((-1) \cdot V) |
-1,265 | \frac{15}{72} = \frac{1/3}{72 \cdot \frac13} \cdot 15 = \tfrac{1}{24} \cdot 5 |
-456 | \left(e^{\frac{1}{12} \cdot \pi \cdot i \cdot 5}\right)^{11} = e^{11 \cdot \tfrac{5}{12} \cdot \pi \cdot i} |
13,756 | 5^x = 2 \cdot \left(3^{x + \left(-1\right)} + 1\right)\Longrightarrow 2 \cdot 3^{x + (-1)} + 3 = 5^x |
17,318 | \dfrac12x + \frac{1}{2}x = x |
-7,177 | 0 = \tfrac25*0 |
8,377 | z^2 - z = (z + 0 \cdot (-1)) \cdot (z + (-1)) |
-19,054 | 14/15 = \frac{A_s}{4\cdot \pi}\cdot 4\cdot \pi = A_s |
22,100 | 15 \times f^2/2 = -f^2/2 + 8 \times f^2 |
10,009 | 1^2 + 4^2 + 3 \cdot 3 + 2 \cdot 2 = 30 |
-29,452 | -\left(\frac{1}{6} \cdot (-5)\right)/6 = \frac{5}{36} |
4,120 | 462 = \dfrac{1!\cdot 2!\cdot 0!}{4!\cdot 5!\cdot 6!}\cdot 12! |
29,103 | 1 = b^0 = b^{1 + (-1)} = \frac{b^1}{b} = b/b |
12,478 | \dfrac{99}{70} - \sqrt{2} = \frac{1}{(70 \sqrt{2} + 99)*70} |
2,769 | \beta*\alpha + \gamma*\alpha = \alpha*(\beta + \gamma) |
-20,708 | \frac{-2 \cdot q + 3 \cdot (-1)}{-q \cdot 10 + 15 \cdot (-1)} = \frac{1}{5} \cdot 1 |
-6,701 | \frac{2}{10} + 8/100 = 8/100 + \frac{1}{100}*20 |
16,314 | a^2 + b*a*2 + b^2 = (a + b)^2 \Rightarrow -a*b*2 + \left(a + b\right) * \left(a + b\right) = b * b + a^2 |
41,608 | 3542 = 154*23 |
14,627 | \tfrac{0 + 2}{1 + 0} = 2 |
-16,352 | \sqrt{16 \cdot 5} \cdot 8 = \sqrt{80} \cdot 8 |
40,711 | F_{1 + j} = F_{j + 1} |
770 | l^2\cdot 4 + l\cdot x\cdot 2 + f = l\cdot 2\cdot (x + l\cdot 2) + f |
2,366 | (2 + z)/((-1)*z) = \frac{1}{(-1)*(y + 4*\left(-1\right))}*y rightarrow y = z*2 + 4 |
25,802 | \tfrac{y}{1 - y} = 1 + y + y^2 + y^3 + y^4 + \cdots |
-28,999 | \left((-1)*382.5 + 1096.5\right)/2 = 357 |
10,112 | 2^k\cdot (b + g) = b\cdot 2^k + 2^k\cdot g |
8,376 | \left(-1\right) - p = t \implies -1 = p + t |
-7,739 | \frac{1}{-4*i + 3}*(3 - i*4) = \frac{-i*4 + 3}{3 - i*4}*\frac{4*i + 3}{3 + 4*i} |
37,733 | i^2 \frac{\sin(i z)}{i z} = \sin(z i) i/z |
-2,980 | 50^{\frac{1}{2}} + 8^{\frac{1}{2}} = (25*2)^{1 / 2} + (4*2)^{\frac{1}{2}} |
14,928 | \dfrac{1}{\cos{T}} = \sec{T} |
-6,500 | \tfrac{12 t}{6 ((-1) + t) (t + 7 (-1))} = \frac{2 t}{(t + (-1)) (t + 7 (-1))} \cdot 6/6 |
4,910 | 1 - \frac{2}{n + 1} = \frac{1}{n + 1}(n + \left(-1\right)) |
4,047 | -X\cdot (X^2 + (-1)) + (X^3 + 1) = -X^2 \cdot X + X + X \cdot X \cdot X + 1 = X + 1 |
34,321 | (G + I) \cdot (G + 1 + I) = G^2 + G + I = G^2 + 1 + G + (-1) + I = G + 1 + I |
-26,122 | \tfrac{1}{9} = 1/9 |
25,431 | 2^n*3 = 2^n + 2^n + 2^n |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.