id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
23,388 | \frac{1/2\cdot 3}{3} = \frac{1}{3\cdot \dfrac{1}{3}\cdot 2} |
-20,537 | 9/(-63) = -\frac{1}{7} (-9/(-9)) |
23,528 | 2 = -3*4 + 14 |
3,237 | -z^2 + x \cdot x = \left(z + x\right) (-z + x) |
21,427 | y^k + 1 = y^k - -1 = (y - -1) \left(y^{k + (-1)} - y^{k + 2 (-1)} + \dotsm + 1\right) |
736 | 2^{10 k} = (1000 + 24)^k = 1000^k + 24*1000^{k + (-1)} k |
-20,071 | \dfrac{1}{3} \cdot 4 \cdot \frac{y \cdot 8 + 9}{9 + y \cdot 8} = \frac{36 + y \cdot 32}{24 \cdot y + 27} |
13,086 | 3 \cdot (-1) + \frac72 = 1/2 |
13,363 | q_l*q_k = q_k*q_l |
-20,139 | \frac{7*\frac{1}{7}}{k + 8*(-1)} = \frac{7}{k*7 + 56*(-1)} |
16,599 | g + g = (g + g)^2 = g\cdot g + g\cdot g + g\cdot g + g\cdot g = g + g + g + g |
-13,358 | 4 + (\dfrac{48}{8}) = 4 + (6) = 4 + 6 = 10 |
20,922 | \tan(7.9) = \tfrac{1}{C*E}*160 \Rightarrow 160/\tan(7.9) = C*E |
10,316 | (-1) + \beta^9 = (\beta \cdot \beta \cdot \beta + (-1)) \cdot (\beta^6 + \beta^3 + 1) |
19,293 | 8 = (-1/5 + 3) (-\frac{1}{7} + 3) |
20,038 | S^2 = \left(-S\right)^2 |
-6,293 | \frac{1}{45 + 5\cdot x} = \frac{1}{(x + 9)\cdot 5} |
3,251 | b \cdot g + g \cdot d = (d + b) \cdot g |
-3,654 | \frac{64\cdot p^4}{72\cdot p^2} = 64/72\cdot \frac{1}{p \cdot p}\cdot p^4 |
51,170 | \frac14\cdot 512 = 128 |
-16,986 | 1 = -z \cdot z - 8\cdot z + z + 8 = -z^2 - 8\cdot z + z + 8 |
19,921 | 0 = x^2 - b \cdot b = (x + b)\cdot \left(x - b\right) |
4,105 | 3 \int\limits_0^{\frac{\pi}{2}} 1\,\mathrm{d}x = \int_0^{\dfrac{3 \pi}{2}} 1\,\mathrm{d}x |
22,447 | 2 = \frac{1}{z}\cdot 2\Longrightarrow z = 1 |
3,676 | X^4 - T = (X^2 - T^{1/2}) \times (X^2 + T^{\frac12}) = (X - T^{1/4}) \times (X + T^{\dfrac{1}{4}}) \times (X^2 + T^{\frac{1}{2}}) |
31,588 | (\left(-1\right)^{\frac{1}{1} \cdot 2})^{1/6} = 1 |
32,863 | {l \choose i} = \dfrac{l!}{(l - i)! \cdot i!} |
18,939 | 720/(360\cdot 1/11) = 22 |
3,553 | x \cdot x \cdot x + x^2 \cdot 3 + 3x + 1 = (x + 1)^3 |
36,919 | -1 = (-1)*10 + 9 |
14,851 | E(U^3) = E(U^2) E(U) |
-6,453 | \dfrac{4r + 4 + 4r - 32 + 16r}{4r^2 - 28r - 32} = \dfrac{24r - 28}{4r^2 - 28r - 32} |
8,895 | s = v\cdot (n - m) + f + j + k\cdot \left(d - v\right) \Rightarrow j = -f + s - (n - m)\cdot v - (d - v)\cdot k |
31,241 | e + y - e + y = e + y - e - y = e - e + y - y |
19,927 | x^2 + 2*x*h + h^2 = (x + h)^2 |
30,835 | (2 + y) \cdot (2 + y) + 4\cdot (-1) = y^2 + y\cdot 4 |
13,417 | xz = \left(x + (-1)\right) \left(z + (-1)\right) + 1 + x + (-1) + z + (-1) |
19,901 | \frac{1}{g^2} = \frac{1}{g} \cdot \frac{1}{g} |
5,511 | h'\cdot x\cdot h\cdot j = h\cdot j\cdot h'\cdot x |
-22,383 | 6 + 2(-1) = 4 |
36,667 | 3^m - S_{m + (-1)} = 3^m - \dfrac12(3^m + (-1)) = \frac{1}{2}(3^m + 1) = S_{m + (-1)} + 1 |
11,895 | (A + B)^2 = A^2 + 2 \cdot A \cdot B + B \cdot B |
21,795 | \dfrac{4}{2\cdot (2\cdot t + 1)} = \dfrac{1}{2\cdot t + 1}\cdot 2 = \frac{1}{t + 1} + \dfrac{1}{(t + 1)\cdot (2\cdot t + 1)} |
-5,107 | 8.7 \times 10^0 = 8.7 \times 10^{2 - 2} |
10,990 | \frac12 \cdot \pi \cdot (4 \cdot x + 1) = 2 \cdot \pi \cdot x + \frac{\pi}{2} |
-18,273 | \frac{z \cdot 9 + z^2}{z^2 + 14 \cdot z + 45} = \frac{z \cdot (9 + z)}{(z + 9) \cdot (z + 5)} |
21,515 | E((Y - g)^2) = E((Y - E(Y) + E(Y) - g)^2) = E((Y - E(Y))^2) + (E(Y) - g) \cdot (E(Y) - g) |
2,092 | 2^{k + (-1)}\cdot (2\cdot k + 2\cdot (-1)) = 2\cdot k\cdot 2^{k + (-1)} - \left(2^{12}\right)^{k + (-1)}\cdot \left(k + (-1)\right) = 2^k\cdot (k + (-1)) |
30,721 | 1 + q^2 + q^4 = (1 + q * q) * (1 + q * q) - q^2 = (1 + q + q^2) (1 - q + q^2) |
-11,635 | 1 - i*8 = 4 + 3(-1) - 8i |
30,871 | y + y + y = 3\cdot y |
-16,602 | 7 \cdot 16^{1 / 2} \cdot 5^{1 / 2} = 7 \cdot 4 \cdot 5^{\frac{1}{2}} = 28 \cdot 5^{1 / 2} |
17,097 | \binom{13}{4}\cdot \binom{2}{1}\cdot \binom{1}{1}\cdot \binom{3}{1}\cdot \binom{4}{1} = 17160 |
-20,115 | 8/8 \times \frac{1}{m \times (-2)} \times (m + 7) = \dfrac{1}{(-16) \times m} \times (m \times 8 + 56) |
11,091 | xzy = zxy |
34,697 | n/2 \leq l \implies -l + n \leq \frac{1}{2} \cdot n |
-3,918 | \frac{r^5 \cdot 66}{24 \cdot r^2} = \frac{1}{24} \cdot 66 \cdot \frac{r^5}{r^2} |
13,804 | \frac{1}{10^1}*\left(10 + (-1)\right)^{1 + \left(-1\right)}*\frac{1}{1!*\left(1 + (-1)\right)!}*1! = 1/10 |
6,119 | 6\cdot 10\cdot \frac{2}{3} = y\cdot 4/3 \Rightarrow y = \dfrac13 |
20,719 | 660 = \binom{5}{2}\cdot \binom{(-1) + 10 + 3}{3 + (-1)} |
17,289 | |u_i \cdot D \cdot D|^2 - |u \cdot D^2|^2 = (|D^2 \cdot u_i| - |D^2 \cdot u|) \cdot (|D^2 \cdot u_i| + |u \cdot D^2|) |
-29,109 | 8*10^2*3/10 = 3/10*800 |
-20,087 | \frac{7}{7} \times \frac{5 \times (-1) + x}{x \times 3 + 4} = \frac{1}{21 \times x + 28} \times (35 \times \left(-1\right) + 7 \times x) |
15,955 | 4\cdot 1/9/180 = \frac{1}{405} |
33,817 | R\cdot a\cdot (v_1 + v_2) = R\cdot a\cdot v_1 + v_2\cdot R\cdot a |
-10,781 | -\frac{6}{q\cdot 25 + 20\cdot (-1)}\cdot 2/2 = -\frac{12}{40\cdot (-1) + q\cdot 50} |
31,939 | 10^{\frac13} = 10^{\frac{1}{3}} |
21,204 | 10000 + t\cdot 200 + t^2 = (100 + t)^2 |
8,569 | 2x = x + 1 - -x + 1 |
14,180 | x = x^{q^h} \implies (x^{q^{(-1) + h}})^q = x |
-19,503 | 9/8\cdot \dfrac59 = 1/9\cdot 5/(8\cdot 1/9) |
8,612 | uk := ku |
26,644 | (2\cdot 5\cdot x)^2 + 2\cdot 5\cdot x = 100\cdot x \cdot x + 10\cdot x = 10\cdot (10\cdot x^2 + x) |
15,028 | \dfrac12 \cdot ((-a + c)^2 + (a - b)^2 + (-c + b)^2) = -c \cdot a + a^2 + b^2 + c^2 - b \cdot a - b \cdot c |
-5,924 | \dfrac{n*7 + 12 (-1)}{n * n + 36 (-1)} = \dfrac{1}{36 (-1) + n * n}(n + 6 + n*3 + 18 (-1) + n*3) |
-9,830 | 0.4 = \dfrac{1}{10}*4 = 2/5 |
13,873 | e^{1/x} = 1 + \frac1x + \frac{1}{2\cdot x \cdot x} + \cdots > \frac{1}{2\cdot x^2} |
7,962 | \left\{\ldots, 2, 1, 4, 3\right\} = \mathbb{N} |
-19,545 | \frac83\cdot 7/4 = \frac{\frac{8}{3}}{\frac{1}{7}\cdot 4}\cdot 1 |
31,574 | x + 1 + 2 = 13 \Rightarrow 10 = x |
14,512 | c\cdot (d\cdot a + a\cdot d) = (d\cdot a + a\cdot d)\cdot c |
-24,283 | \frac{72}{7 + 5} = \frac{72}{12} = \frac{72}{12} = 6 |
2,756 | 4 \cdot \sqrt{3} + 7 = \sqrt{7^2 + (-1)} + 7 |
7,038 | 1560 = 40 (-1) + 1600 |
-3,111 | 5 \cdot \sqrt{5} = \sqrt{5} \cdot (4 + 2 + (-1)) |
-22,201 | 72 \cdot (-1) + q^2 - q = (8 + q) \cdot \left(9 \cdot (-1) + q\right) |
46,564 | \sin{4\cdot \cos^2{\theta}} = \sin(2 + 2\cdot \cos{2\cdot \theta}) = \sin{2}\cdot \cos\left(2\cdot \cos{2\cdot \theta}\right) + \cos{2}\cdot \sin(2\cdot \cos{2\cdot \theta}) |
32,592 | \cot{2x} = 1\Longrightarrow \tan{2x} = 1 |
-509 | \frac{11}{12} \cdot \pi = \pi \cdot 323/12 - \pi \cdot 26 |
33,186 | {n \choose (-1) + r} (-(r + (-1)) + n)/r = (-r + n + 1)/r {n \choose (-1) + r} |
-19,799 | 0.01 \times (-180) = -\dfrac{180}{100} = -1.8 |
-3,470 | \frac{5*9}{5*20} = 45/100 |
22,126 | 1 + \frac{1}{k + 1} = \dfrac{2 + k}{k + 1} |
19,664 | \binom{m}{1}\cdot c_l^{m + \left(-1\right)}\cdot c_{l + (-1)}\cdot a_m = c_{(-1) + l}\cdot c_l^{(-1) + m}\cdot a_m\cdot m |
911 | (x + (-1))^2 - 2*\left(x + (-1)\right) + (-1) = x * x - 2*x + 1 - 2*x + 2 + (-1) = x^2 - 4*x + 2 |
-8,309 | 0 = \frac{1}{-3}\cdot 0 |
-20,572 | \frac{i + 3\cdot (-1)}{i + 3\cdot (-1)}\cdot (-\frac{7}{4}) = \dfrac{-7\cdot i + 21}{4\cdot i + 12\cdot \left(-1\right)} |
18,670 | n \cdot 2 = 4n - 2n |
-9,941 | -1^{-1} (-\frac{1}{5}) = \frac{1}{5}(\left(-1\right) \left(-1\right)) = 1/5 |
10,866 | A + G + C = A + G + C = A + G + C |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.